Numerical Simulation on Effect of Impact Velocity and Target Thickness in Magnesium Alloy AZ31B

2015 ◽  
Vol 787 ◽  
pp. 291-295
Author(s):  
B. Ezhil Vendhan ◽  
K.L. Hari Krishna ◽  
A.K. Lakshminarayanan

Recent research works indicate that magnesium alloy can be used for constructing light weight armor because of its density, which is 35% lower than aluminium and 77% lower than steel and also it exhibits superior vibration damping and better failure mechanisms than the contemporary ballistic materials. In this study, numerical simulations were carried out in a monolithic magnesium AZ31B plate using AUTODYN software to understand the effect of Impact velocity and plate thickness on the deformation of target plates. The projectiles are normally impacted on target plates of varying thickness plates at different velocities. Lagrangian solver was used for meshing, in which the grid developed by the solver distorts with the material helps in eliminating the inaccuracies caused by the cell growth due to the shear force of the bullet impact. The simulation results are verified with the experimental data available in the literature.

2005 ◽  
Vol 488-489 ◽  
pp. 853-858 ◽  
Author(s):  
Do Yeon Hwang ◽  
Akira Shimamoto

In this study, dynamic behaviors of cracks under dynamic biaxial stress were investigated. We conducted static and dynamic loading fracture experiments on a magnesium alloy (AZ31B-O) under equitable and inequitable biaxial stress by using a hydraulic high-speed biaxial experimental machine. We processed specimens as the cross type with a crack. Different kinds of cracks were defined by their crack angles. We analyzed the results using the caustic method. The experiments revealed some important findings; there is a negative relation between the fracture toughness value and the plate thickness of the magnesium alloy sheet specimen; the fracture toughness value decreases when the crack has an angle different from the loading direction; the fracture toughness value decreases significantly under inequitable biaxial stress.


Author(s):  
M. M. Mubasyir ◽  
◽  
M. F. Abdullah ◽  
K. Z. Ku Ahmad ◽  
R. N. R. Othman ◽  
...  

2021 ◽  
Vol 55 (4) ◽  
Author(s):  
Zhiquan Huang ◽  
Jinchao Zou ◽  
Junpeng Wang ◽  
Yanjie Pei ◽  
Renyao Huang ◽  
...  

The present study aims to investigate the effect of a prefabricated-crown rolling process on the corrosion characteristic of the AZ31 magnesium alloy. Specimens made of the AZ31 alloy were rolled under various crown conditions, and their microstructure evolution and corrosion behavior were analyzed. The corrosion behavior was studied using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that the corrosion-current density of the AZ31 alloy with a side pressure of 37.5 % of the plate thickness of the precast convexity decreased from 3.79 × 10–6 A/cm2 to 1.80 × 10–6 A/cm2, and the difference between the edge and the middle of the AZ31 alloy was shortened from 2.05 × 10–6 A/cm2 to 1.14 × 10–6 A/cm2. The charge-transfer resistance also increased from 507.1 Ω·cm2 to 581.2 Ω·cm2. The improvement in the corrosion resistance is a result of the more stable corrosion products and microstructure refinement formed after the prefabricated-crown rolling process.


The thickness of the heat-affected zone (HAZ) has a great influence on the strength of the welded joint, so one of the important tasks is to control the HAZ to a small enough level, through using the suitable heat-input (qd). In this study, the authors use SYSWELD software to compute and build a relationship between the heat-input and the thickness of the heat-affected zone in the plate thickness direction to find the right heat-input for researched welding joint. The simulation results show that when welding the root pass with qd > 552 J/mm and the cap pass with 754 J/mm < qd < 1066 J/mm, the thickness of HAZ were increased with a function almost linearly.


Sign in / Sign up

Export Citation Format

Share Document