Tool Wear of Aluminum/Chromium/Tungsten-Based-Coated Cemented Carbide in Cutting Hardened Steel

2015 ◽  
Vol 798 ◽  
pp. 377-383 ◽  
Author(s):  
Tadahiro Wada ◽  
Hiroyuki Hanyu

An aluminum/chromium based coating film, called (Al,Cr)N coating film, has been developed. This coating film has a slightly more inferior critical scratch load and micro-hardness. Therefore, to improve both the scratch strength and micro-hardness of the (Al,Cr)N coating film, the cathode material of an alumi-num/chromium/tungsten target was used in adding the tungsten (W) to the cathode material of the alumi-num/chromium target. To clarify the effectiveness of the aluminum/chromium/tungsten-based coating film, we measured the thickness, micro-hardness and critical scratch strength of aluminum/chromium/tungsten-based coating film formed on the surface of a substrate of cemented carbide ISO K10 formed by the arc ion plating process. The hardened steel ASTM D2 was turned with the (Al,Cr,W)N, (Al,Cr,W)(C,N), (Al,Cr)N and the (Ti,Al)N coated cemented carbide tools. The tool wear of the coated cemented carbide tools was ex-perimentally investigated. The following results were obtained: (1) The micro-hardness of the (Al,Cr,W)N or (Al,Cr,W)(C,N), (Al,Cr)N coating film was 3110 HV0.25N or 3080 HV0.25N, respectively. (2) The critical scratch load of the (Al,Cr,W)(C,N) coating film was 123 N, which was much higher than that of the (Al,Cr)N or (Ti,Al)N coating film. (3) In cutting the hardened steel using (Al,Cr,W)(C,N) and (Ti,Al)N coated carbide tools, the wear progress of the (Al,Cr,W)(C,N) coated carbide tool was almost equivalent to that of the (Ti,Al)N coated carbide tool. The above results clarify that the aluminum/chromium/tungsten-based coating film, which is a new type of coating film, has both high hardness and good adhesive strength, and can be used as a coating film of WC-Co cemented carbide cutting tools.

2011 ◽  
Vol 87 ◽  
pp. 186-190
Author(s):  
Tadahiro Wada ◽  
Koji Iwamoto ◽  
Keizo Tsukamoto ◽  
Kazuki Hiro

Various methods of surface modification technology are available for yielding high function characteristics such as wear-resistance, lower or higher friction coefficient, corrosion-resistance and thermal-resistance on the surface of the material. Generally, the coating of a hard material like ceramic on the surface of a material is a popular surface modification technology. The physical vapor deposition (PVD) method, which is one of the coating technologies, is widely used because it can be coated at a lower treatment temperature of 470K – 870K. In cutting, e.g. turning, milling, drilling and tapping, coated cemented carbide tools, which have good fracture toughness and wear resistance, seem to be effective tool materials. In this case, the titanium based films (e.g. TiN, Ti(C,N), (Ti,Al)N) are generally used as the coating film. However, the tantalum based films (e.g. TaN, TaC) are not applied as the coating film for cutting tools because the melting point of TaC is higher than that of TiC. Moreover, it is unclear whether TaN coating film can be used as a coating film of WC-Co cemented carbide cutting tools. In this study, to clarify the effectiveness of tantalum (TaN) coating film, we measured the thickness, hardness and scratch strength (critical load measured by scratch tester) of TaN coating film formed on the surface of the substrate which was a cemented carbide ISO K10 by the magnetron sputter ion plating process. The hardened steel ASTM D2 (JIS SKD11) was turned with the TaN and the (Ti,Al)N coated cemented carbide tools. The tool wear of the TaN coated cemented carbide tool was experimentally investigated and compared with that of the (Ti,Al)N coated tool. The following results were obtained: (1) Droplets on the surface of the TaN coating film, which has the K10 substrate, were negligible. (2) The micro-hardness of TaN coating film 2510HV was higher than that of TiN coating film 2090HV, and there was little difference in hardness between the TaN 2510HV and (Ti,Al)N 2710HV. (3) The critical scratch load of TaN coating film over 130N was higher than that of TiN coating film 68N or (Ti,Al)N coating film 73N. (4) In cutting the hardened steel using TaN and (Ti,Al)N coated tools, the wear progress of the TaN coated carbide tool was almost equivalent to that of the (Ti,Al)N coated carbide tool. The above results clarify that the TaN coating film, which is a new type of coating film, has both high hardness and good adhesive strength, and can be used as a coating film of WC-Co cemented carbide cutting tools.


2015 ◽  
Vol 772 ◽  
pp. 72-76 ◽  
Author(s):  
Tadahiro Wada ◽  
Hiroyuki Hanyu

In order to improve both the scratch strength and the micro-hardness of (Al,Cr)N coating film, the cathode material of an aluminum/chromium/tungsten target was used in adding the tungsten (W) to the cathode material of the aluminum/chromium target. In this study, hardened sintered steel was turned with (Al60,Cr25,W15)N, (Al60,Cr25,W15)(C,N), (Al64,Cr28,W8)(C,N), (Al,Cr)N and (Ti,Al)N coated cemented carbide tools. The tool wear of the coated cemented carbide tool was experimentally investigated. The following results were obtained: (1) In cutting hardened sintered steel at the cutting speed of 0.42 m/s using the (Al60,Cr25,W15)N, the (Al60,Cr25,W15)(C,N), the (Al64,Cr28,W8)(C,N), the (Ti,Al)N and (Al,Cr)N coated tools, the wear progress of the (Al64,Cr28,W8)(C,N) coated tool became slowest among that of the five coated tools. (2) The wear progress of the (Al60,Cr25,W15)(C,N) coated tool was almost equivalent to that of the (Al64,Cr28,W8)(C,N) coated tool. However, at a high cutting speed of 1.67 m/s, the wear progress of the (Al60,Cr25,W16)(C,N) coated tool was faster than that of the (Al64,Cr28,W8)(C,N) coated tool.


2019 ◽  
Vol 278 ◽  
pp. 02001
Author(s):  
Tadahiro Wada ◽  
Hiroyuki Hanyu

To clarify the effectiveness of multi-layer AlCrWN/AlCrWSiN-coated cemented carbide tools, the wear progress was investigated in cutting sintered steel using three types of coated tool. Tool I had a mono-layer (Al60,Cr25,W15)N-coating film, Tool II had a mono-layer (Al53,Cr23,W14,Si10)N-coating film and Tool III had a multi-layer (Al60,Cr25,W15)N/(Al53,Cr23,W14,Si10)N-coating film. The following results were obtained: (1) The main tool failure of the three types of coated tools was flank wear within a maximum value of flank wear width of 0.2 mm. (2) The wear progress of Type III, which was a multi-layer coating system, was the slowest in cutting sintered steel.


2011 ◽  
Vol 325 ◽  
pp. 387-392 ◽  
Author(s):  
Junsuke Fujiwara ◽  
Takaaki Arimoto ◽  
Kazuya Tanaka

Titanium alloys have high strength to weight ratio, corrosion resistance, retention of strength at elevated temperatures and low thermal conductivity. In cutting of the titanium alloy, these characteristics have bad influence on tool wear. Therefore, the titanium alloy is generally machined in the milling at low cutting speed. Recently, the demand of the titanium industrial products is increasing and the high speed milling of the titanium alloy is desired. In this study, the Ti-6Al-4V alloy was machined at high cutting speed, and the tool wear progress and the cutting mechanics were experimentally investigated in order to clarify an effective tool material and cooling method for the cutting of the titanium alloy. The results obtained are as follows: In the cutting with a cemented carbide tool and coated cemented carbide tools of TiAlN, TiCN, DLC at the cutting speed 200 m/min, the wear progress of the coated tools were slower than that of the cemented carbide tool. The titanium alloy was cut in the dry and mist methods in order to avoid the thermal effect of the inserts, the wear progress in mist cutting was longer than that in dry cutting.


Sign in / Sign up

Export Citation Format

Share Document