high cutting speed
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 14)

H-INDEX

10
(FIVE YEARS 2)

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1516
Author(s):  
Bartosz Zieliński ◽  
Tomasz Chaciński ◽  
Danil Yurievich Pimenov ◽  
Krzysztof Nadolny

In the food industry, there are many varieties of technical blades with different contours as well as different cutting edge geometries. The evaluation of the ability of technical blades to separate (cut) animal tissues is not a simple task and is usually based on the evaluation of the cutting effects in a technological process. This paper presents a methodology for evaluating the cutting force of technical blades used in food processing. A specially made test stand with numerical control was used in the study. Its application enabled a comparison of cutting force values for four different cutting edge geometries of planar knives used in the skinning operation of flat fishes. A unique feature of the conducted research was the use of a relatively high cutting speed value of vf = 214 mm/s, which corresponded to the real conditions of this process carried out in the industry. Obtained test results allow unambiguously choosing the most advantageous variant of knife geometry from among four different variants used for the tests. The results showed a clear relationship between the cutting force value and the value of the tip angle of the blades tested: for blades with the lowest tip angle, the lowest cutting force values were obtained.


Author(s):  
Rahul Davis ◽  
Abhishek Singh

The excellent biodegradability of the magnesium (Mg) alloys is gradually proving them as the potential substitutes to several biomedical implants such as chemotherapy ports or screws, which are required to be removed via secondary surgeries after a specific period of time. However, an early degradation of these alloys even before the complete healing of the damaged tissue, when exposed to the physiological atmosphere, has been limiting their full-fledged application. Some latest research articles suggest that such challenges can be effectively overcome by improving the surface integrity of Mg alloys using the sustainable manufacturing techniques, such as cryogenic machining. Recent literatures also report the outperformance of the cryogenically treated (cryo-treated) cutting tools for achieving an enhanced surface integrity. In this relation, the present research attempts to improve the surface integrity of one of the most commonly used biocompatible alloys of magnesium, known as AZ91D. For this reason, a TiAlN coated-cemented carbide end mill was used in an untreated and cryo-treated state amid wet, cryogenic, and hybrid-lubri-coolant-milling conditions. The milling and FESEM (field emission scanning electron microscopy) results showed a considerable improvement in the surface integrity in terms of an augmented surface roughness and microhardness at 56.52 m/min cutting speed with the cryo-treated end mill during hybrid-lubri-coolant-milling. At the high cutting speed hybrid-lubri-coolant-milling, the cryo-treated end mill attained 35.71% and 48.07% better surface finish than that of cryo and wet-lubri-coolant-milling, respectively. Although, the highest surface microhardness was achieved by the cryo-treated end mill amid cryo-lubri-coolant-milling, due to the poorest surface quality observed in terms of the maximum number of machining-induced cracks, the hybrid-lubri-coolant-milled surface was preferred over the cryo and wet-lubri-coolant-milled surfaces. Further, the FESEM and EDS (energy-dispersive X-ray spectroscopy) analyses confirmed the oxide layer produced by the cryo-treated end mill amid hybrid-lubri-coolant-milling, to be the thinnest (12.16 µm) and most uniform passivation layer.


Author(s):  
Paolo Albertelli ◽  
Valerio Mussi ◽  
Matteo Strano ◽  
Michele Monno

AbstractIn this paper, the results of an experimental campaign of cryogenic milling are presented and discussed. For this purpose, a specific experimental setup that allowed to feed the liquid nitrogen LN through the tool nozzles was used. Tool life tests were carried out at different cutting speeds. The tool duration data were collected and used to identify the parameters of the Taylor’s model. Different end-of-life criteria for the tool inserts were even investigated. The achieved results are compared to those obtained using conventional cooling. It was observed that at low cutting velocity, conventional cooling still assures longer tool lives than in cryogenic condition. Since in cryogenic milling the increasing of the cutting velocity is not so detrimental as in conventional cutting, at high cutting speed (from 125 m/min) longer tool durations can be achieved. Statistical analyses on the model parameters were carried out to confirm the presented findings. The analysis of the effect of the cooling approach on the main wear mechanisms was also reported. At low cutting speed, adhesion and chipping phenomena affected the tool duration mainly in cryogenic milling.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 277
Author(s):  
Asim Ahmad Riaz ◽  
Riaz Muhammad ◽  
Naveed Ullah ◽  
Ghulam Hussain ◽  
Mohammed Alkahtani ◽  
...  

Friction and plastic deformation at the tool–chips interaction during a dry drilling process results in temperature rise and promotes tool wear and surface roughness. In most of the components produced in industries, a drilling process is used to make a hole for final assembly. Therefore, knowledge of temperatures produced during drilling operation at various machining input parameters is required for the best quality product. A fuzzy logic-based algorithm is developed to predict the temperature generated in the drilling process of AISI 1018 mild steel. The algorithm used speed and feed rate of the drill bit as input parameters to the fuzzy domain. A set of rules was used in the fuzzy domain to predict maximum temperature produced in the drilling process. The developed algorithm is simulated for various input speed and feed rate parameters and was verified through the maximum temperature measured during drilling of the studied material at selected speed–feed combinations. Experiments were conducted to validate the results of developed fuzzy logic-based algorithm by using non-contact infrared pyrometer for drilling of AISI 1018 steel. A good agreement between the predicted and experimentally measured maximum temperature was observed with an error less than 6%. It is found that temperature increases with increase in cutting speed and feed rate. Size of roll back burr formation at the hole perimeter significantly increases with increase in drill speed and feed rate. Segmental continuity in spiral or helix chips morphology is more at low feed and high cutting speed. Chip radius increases with increase in feed rate and results in damaging of the machined surface and causes burr formation while the radius decreases with cutting speed along with improved hole surface finish.


2020 ◽  
Vol 10 (5) ◽  
pp. 1746
Author(s):  
Qi Deng ◽  
Rong Mo ◽  
Zezhong C. Chen ◽  
Zhiyong Chang

Cutter edge temperature in milling is an important factor to cutter life. With high cutting speed and feedrate, the cutting efficiency is high; however, the cutter edge temperature is high, shortening the cutter life. Therefore, it is necessary to know the cutter edge temperature in milling. Unfortunately, the cutter edge temperature is difficult to measure and predict in milling. To address the technical challenge, an analytical approach was proposed to predict cutter edge temperature in milling. First, the heat flux into the cutter edge was calculated. Second, by using the Green function, the cutter edge temperature was figured out, and the results obtained from this approach agreed well with that of a recognized test. Then, based on the engagement between the cutter and workpiece in trochoidal milling, the cutter edge temperature was obtained in trochoidal milling. Finally, a temperature comparison was made between trochoidal and side milling based on this analytical approach, and the reasons that trochoidal machining could extend the cutter life were found. This approach is first proposed to calculate the cutter edge temperature in trochoidal milling and can be applied to machining parameters optimization in trochoidal milling and cutter design optimization.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 818 ◽  
Author(s):  
Jiyong Yi ◽  
Kanghua Chen ◽  
Yinchao Xu

In this study, three kinds of coatings, AlTiN, AlTiN–Ni, and AlTiN–Cu were deposited via the cathodic arc evaporation method. The microstructure, mechanical properties, oxidation resistance, and cutting behavior of these coatings were then investigated. The incorporation of Cu(Ni) into AlTiN eliminated its columnar structure and led to an increase in the growth defects of its macroparticles. The addition of Cu and Ni decreased the hardness of the coatings, their elastic moduli, and their friction coefficients. All of the AlTiN, AlTiN–Ni, and AlTiN–Cu coatings presented sufficient adhesion strength values. The oxidation resistance of these three coatings was determined to be in the following order: AlTiN > AlTiN–Ni > AlTiN–Cu. Titanium turning experiments indicated that the cutting force was reduced and the tool life was improved through doping with Cu(Ni) elements, dependent on cutting speed. The AlTiN–Ni coating showed the best performance at a high cutting speed, whereas the AlTiN–Cu coating was more successful at a lower cutting speed.


2019 ◽  
Vol 825 ◽  
pp. 45-50
Author(s):  
Kamonpong Jamkamon ◽  
Keiji Yamada ◽  
Katsuhiko Sekiya ◽  
Ryutaro Tanaka

In this paper, preheating temperature was investigated for the laser assisted machining (LAM) of Inconel 718 under different conditions for the milling test. The experimental results show that the requirement of laser power for the particularly preheating temperature proportionally increased with the table speed. The resultant cutting force for sufficient shearing work material in LAM was lower than conventional machining (CM) approximately 11, 21 and 28% for the cutting speed of 30, 50 and 75 m/min, respectively. The tool wear in LAM could be improved at relatively high cutting speed of 75 m/min and the hardness of machined surface in LAM was slightly higher than CM.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2792 ◽  
Author(s):  
Munish Kumar Gupta ◽  
Muhammad Jamil ◽  
Xiaojuan Wang ◽  
Qinghua Song ◽  
Zhanqiang Liu ◽  
...  

Recently, the application of nano-cutting fluids has gained much attention in the machining of nickel-based super alloys due their good lubricating/cooling properties including thermal conductivity, viscosity, and tribological characteristics. In this study, a set of turning experiments on new nickel-based alloy i.e., Inconel-800 alloy, was performed to explore the characteristics of different nano-cutting fluids (aluminum oxide (Al2O3), molybdenum disulfide (MoS2), and graphite) under minimum quantity lubrication (MQL) conditions. The performance of each nano-cutting fluid was deliberated in terms of machining characteristics such as surface roughness, cutting forces, and tool wear. Further, the data generated through experiments were statistically examined through Box Cox transformation, normal probability plots, and analysis of variance (ANOVA) tests. Then, an in-depth analysis of each process parameter was conducted through line plots and the results were compared with the existing literature. In the end, the composite desirability approach (CDA) was successfully implemented to determine the ideal machining parameters under different nano-cutting cooling conditions. The results demonstrate that the MoS2 and graphite-based nanofluids give promising results at high cutting speed values, but the overall performance of graphite-based nanofluids is better in terms of good lubrication and cooling properties. It is worth mentioning that the presence of small quantities of graphite in vegetable oil significantly improves the machining characteristics of Inconel-800 alloy as compared with the two other nanofluids.


Sign in / Sign up

Export Citation Format

Share Document