Performance of Automotive Air-Conditioning System by Using Ejector as an Expansion Device

2016 ◽  
Vol 819 ◽  
pp. 216-220
Author(s):  
Firdaus Mat Jusoh ◽  
Henry Nasution ◽  
Azhar Abdul Aziz ◽  
Sumeru ◽  
Afiq Aiman Dahlan ◽  
...  

An automotive air conditioning system that uses thermal expansion valve (TEV) as an expansion device. The pressure drop from the condenser and evaporator pressure is considered an isenthalpic process (constant enthalpy), where this process causes energy loss (entropy generation) in the expansion process. The ejector recovers energy losses, which was previously lost in the expansion valve, and an ejector can be used to generate isentropic condition in the expansion process. The use of an ejector as an expansion device in this study can reduce power consumption of the compressor and increase cooling capacity of the evaporator. The experiments were conducted with temperature set-points of the conditioned space of 21, 22 and 23°C with internal heat loads of 100, 200 and 400 W. Measurements were taken during the one hour experimental period at a time interval of five minutes. The experiment results indicate that the ejector system is better than TEV and save fuel.

2016 ◽  
Vol 819 ◽  
pp. 221-225 ◽  
Author(s):  
Hisamudin Mohd Yunus ◽  
Henry Nasution ◽  
Azhar Abdul Aziz ◽  
Sumeru ◽  
Afiq Aiman Dahlan

The automotive air conditioning is one of the important things to be discovered and analyses to maximize the coefficient of performance (COP). The effects of the global warming in a surrounding world give a big impact on performance of air conditioning system in the vehicle. The significant of these issues make the ambient temperature changing. The ambient temperature it’s different according to the type of the place. The different ambient temperature will effect on the performance of air conditioning system. This study will analysis the energy consumption, temperature distribution and COP at various ambient temperature (30, 35 and 40°C), internal heat load (0, 500,700 and 1000 W) and engine speed (1000, 1500 and 2000 rpm) using HFC-R134a as the refrigerant. Measurements were taken during the 30 minute experimental period for temperature set point which 21°C. The results showed that the performance of the automotive air conditioning system decreases when ambient temperature, internal heat load and compressor speed increased.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Yousuf Alhendal ◽  
Abdalla Gomaa ◽  
Gamal Bedair ◽  
Abdulrahim Kalendar

The energy and exergy of low-global warming potential (GWP) refrigerants were investigated experimentally and theoretically. Refrigerants with a modest GWP100 of  ≤ 150 can be sufficient for bringing down emissions which were concerned for the automotive air-conditioning system. Three types of low-GWP refrigerants, R152a, R1234yf, and R1234ze(E), were examined with particular reference to the current high-GWP of R134a. The effect of different evaporating and condensing temperatures in addition to compressor speed was considered. The purpose was to bring a clear view of the performance characteristics of possible environment friendly alternatives of R134a. The analysis was carried out with compressor power, cooling capacity, coefficient of performance, exergy destruction, and exergy efficiency. It was noted that the total exergy destruction of R1234yf was reduced by 15% compared to that of R134a. The refrigerant R1234ze(E) has the highest energetic and exergetic performance compared with the other investigated refrigerants.


2019 ◽  
Vol 25 (12) ◽  
pp. 1-14
Author(s):  
Rafah Hussain ◽  
Issam Mohammed Ali

Reducing global warming potential (GWP) of refrigerants is needed to the decrease of ozone-depleting of refrigeration systems leakages. Refrigerant R1234yf is now used to substitute R134a inside mobile air conditioning systems. Thermodynamic properties of R1234yf are similar to R134a. Also, it has a very low GWP of 4, compared to 1430 for R134a, making it a proper choice for future automobile refrigerants. The purpose of this research is to represent the main operating and performance differences between R1234yf and R134a. Experimental analysis was carried out on the automotive air conditioning system (AACS) with 3 kW nominal capacity, to test and compare the performance of R134a with R1234yf. Experiments were accomplished for both refrigerants in almost the same working conditions and procedure with a range of ambient temperature varied from 26oC to 50oC. Parameters studied were ambient temperature, type of refrigerant in the system at compressor speed 1450 rpm, and internal thermal loads of passenger room. The performance characteristics of the system, including COP and cooling capacity, were studied by changing different parameters. The results show that COP of R134a is higher than R1234yf by 12.6%, while the refrigeration effect of R134a is higher than R1234yf by 25%. This shows that R1234yf is a suitable and good candidate for drop-in replacement of R134a in AACS.


2012 ◽  
Vol 614-615 ◽  
pp. 674-677
Author(s):  
Nasution Henry ◽  
M.H.Z. Yamani ◽  
K. Sumeru

The automotive air conditioning compressor (AAC) is belt-driven by the engine. The compressor speed is directly proportional to the engine speed. Therefore, the cooling capacity will vary as the engine speed changes. To meet the air conditioning (AC) demand, the compressor continually cycles on and off. In the research, the compressor of the AAC is driven by an electric motor which in turn is operated by electrical battery (12 volt). The use of direct current compressor (DCC) is seen as a solution of the existing system. Using the proposed system, DCC gets significant improvements in energy efficiency. Compared with AAC system, the energy conservation effect is about 77.5% to 86.35%.


2013 ◽  
Vol 388 ◽  
pp. 111-115
Author(s):  
Mohd Rozi Mohd Perang ◽  
Henry Nasution ◽  
Abdul Latiff Zulkarnain ◽  
Azhar Abdul Aziz ◽  
Afiq Aiman Dahlan

The HFC-R134a and hydrocarbon refrigerant (HCR) will be evaluated on the automotive air conditioning (AAC) experimental test rig which completed with the AAC system including the blower, evaporator, condenser, radiator, electric motor, compressor, alternator and equipped with the simulation room acting (equipped with internal heat load) as the passenger compartment. The electric motor operated as a car’s engine and will drive the compressor simultaneously to the alternator to recharge the battery. The tests have been performed by varying the motor speed; 1000, 2000 and 3000 rpm, temperature set-point; 21 and 230C, and internal heat loads; 0, 500, 700 and 1000 W. The results of the performance characteristics of the HCR indicate the encouraging enhancement of the AAC system compared to Hydrofluorocarbon refrigerant (HFC-R134a).


Sign in / Sign up

Export Citation Format

Share Document