Soil Stresses on Carbon Steel Pipe Undergoing Uplift

2016 ◽  
Vol 835 ◽  
pp. 439-443
Author(s):  
Yuri D. Costa ◽  
Lucas S. Moraes ◽  
Carina L. Costa

This paper presents a three-dimensional numerical study to evaluate the variations in stresses in the soil mass surrounding a carbon steel pipe class API 5L X60 submitted to uplift due to ground elevation. Analyses were carried out for soil relative density, pipe stiffness and surficial surcharge loading. Results have shown that stress variations due to uplift are lower for looser backfill soils and flexible pipes. Stress variations in pipe invert are meaningful in the vicinity of the region between stable and unstable soil masses.

Author(s):  
Jose´ Renato M. de Sousa ◽  
Paula F. Viero ◽  
Carlos Magluta ◽  
Ney Roitman

This paper deals with a nonlinear three-dimensional finite element (FE) model capable of predicting the mechanical response of flexible pipes subjected to axisymmetric loads focusing on their axial compression response. Moreover, in order to validate this model, experimental tests carried out at COPPE/UFRJ are also described. In these tests, a typical 4″ flexible pipe was subjected to axial compression until its failure is reached. Radial and axial displacements were measured and compared to the model predictions. The good agreement between all obtained results points that the proposed FE model is efficient to estimate the response of flexible pipes to axial compression and, furthermore, has potential to be employed in the identification of the failure modes related to excessive axial compression as well as in the mechanical analysis of flexible pipes under other types of loads.


Author(s):  
José Renato M. de Sousa ◽  
Paula F. Viero ◽  
Carlos Magluta ◽  
Ney Roitman

This paper deals with a nonlinear three-dimensional finite element (FE) model capable of predicting the mechanical response of flexible pipes subjected to axisymmetric loads focusing on their axial compression response. Moreover, in order to validate this model, experimental tests are also described. In these tests, a typical 4 in. flexible pipe was subjected to axial compression until its failure is reached. Radial and axial displacements were measured and compared to the model predictions. The good agreement between all results points out that the proposed FE model is effective to estimate the response of flexible pipes to axial compression and; furthermore, has potential to be employed in the identification of the failure modes related to excessive axial compression as well as in the mechanical analysis of flexible pipes under other types of loads.


2021 ◽  
Vol 11 (11) ◽  
pp. 4842
Author(s):  
Mahmoud H. Mohamed ◽  
Mohd Ahmed ◽  
Javed Mallick ◽  
Pham V. Hoa

The earth nailing system is a ground improvement technique used to stabilize earth slopes. The behavior of the earth nailing system is dependent on soil and nailing characteristics, such as the spacing between nails, the orientation, length, and method of installation of nails, soil properties, slope height and angle, and surcharge loading, among others. In the present study, a three-dimensional physical model was built to simulate a soil nailed slope with a model scale of 1:10 with various soil nail characteristics. The simulated models consist of Perspex strips as facing and steel bars as a reinforcing system to stabilize the soil slope. Sand beds in the model were formed, using a sand raining system. The performance of nailed soil slope models under three important nails characteristics, i.e., length, spacing and orientation, with varying surcharge loading were studied. It was observed that there is a reduction in the lateral movement of slope and footing settlements with an increase in length. It was found that the slope face horizontal pressure is non-linear with different nail characteristics. The increase in length and inclination of the soil nails decreased the vertical, horizontal stress and footing settlement, while the increase in spacing of the nails increased the vertical and horizontal stress behind the soil mass.


Author(s):  
C. Abegg ◽  
Graham de Vahl Davis ◽  
W.J. Hiller ◽  
St. Koch ◽  
Tomasz A. Kowalewski ◽  
...  

2012 ◽  
Vol 9 (1) ◽  
pp. 94-97
Author(s):  
Yu.A. Itkulova

In the present work creeping three-dimensional flows of a viscous liquid in a cylindrical tube and a channel of variable cross-section are studied. A qualitative triangulation of the surface of a cylindrical tube, a smoothed and experimental channel of a variable cross section is constructed. The problem is solved numerically using boundary element method in several modifications for a periodic and non-periodic flows. The obtained numerical results are compared with the analytical solution for the Poiseuille flow.


Sign in / Sign up

Export Citation Format

Share Document