Conductivity Modification of Carbon-Based Nanocomposites

2018 ◽  
Vol 879 ◽  
pp. 41-46
Author(s):  
Theerapol Thurakitseree ◽  
Wilaiwan Leenakul

The combination of carbon materials and polymer has been well studied according to their compatable mixture in polymer with promising properties. Due to their excellent electrical and thermal properties for some types of carbons such as carbon nanotubes and graphite, they have been selected as component for nanocomposites. Here, capability of multi-walled carbon nanotubes (MWNTs) and graphite for nanocomposites were demonstrated. Nanotubes were functionalized by chemical process, and added into polyvinyl chloride (PVA) matrix. They were then used as main filler to modify thermal and electrical conductivities. Conductivities of different composite mixtures were finally investigated. With the use of low total amount of carbon materials, it was found that although there is no significant change in electrical and thermal conductivities, the highest conductivities could be obtained from MWNT to graphite ratio of 1:1 in PVA matrix, while the G-band mode does not give a rise to electron transfer.

Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 115 ◽  
Author(s):  
Yan-Na Ning ◽  
Bao-Lin Xiao ◽  
Nan-Nan Niu ◽  
Ali Moosavi-Movahedi ◽  
Jun Hong

In the present study, a glucose oxidase (GluOx) direct electron transfer was realized on an aminated polyethylene glycol (mPEG), carboxylic acid functionalized multi-walled carbon nanotubes (fMWCNTs), and ionic liquid (IL) composite functional polymer modified glassy carbon electrode (GCE). The amino groups in PEG, carboxyl groups in multi-walled carbon nanotubes, and IL may have a better synergistic effect, thus more effectively adjust the hydrophobicity, stability, conductivity, and biocompatibility of the composite functional polymer film. The composite polymer membranes were characterized by cyclic voltammetry (CV), ultraviolet-visible (UV-Vis) spectrophotometer, fluorescence spectroscopy, electrochemical impedance spectroscopy (EIS), and transmission electron microscopy (TEM), respectively. In 50 mM, pH 7.0 phosphate buffer solution, the formal potential and heterogeneous electron transfer constant (ks) of GluOx on the composite functional polymer modified GCE were −0.27 V and 6.5 s−1, respectively. The modified electrode could recognize and detect glucose linearly in the range of 20 to 950 μM with a detection limit of 0.2 μM. The apparent Michaelis-Menten constant (Kmapp) of the modified electrode was 143 μM. The IL/mPEG-fMWCNTs functional polymer could preserve the conformational structure and catalytic activity of GluOx and lead to high sensitivity, stability, and selectivity of the biosensors for glucose recognition and detection.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 798
Author(s):  
Ana T. S. C. Brandão ◽  
Liana Anicai ◽  
Oana Andreea Lazar ◽  
Sabrina Rosoiu ◽  
Aida Pantazi ◽  
...  

Nano carbons, such as graphene and carbon nanotubes, show very interesting electrochemical properties and are becoming a focus of interest in many areas, including electrodeposition of carbon–metal composites for battery application. The aim of this study was to incorporate carbon materials (namely oxidized multi-walled carbon nanotubes (ox-MWCNT), pristine multi-walled carbon nanotubes (P-MWCNT), and reduced graphene oxide (rGO)) into a metallic tin matrix. Formation of the carbon–tin composite materials was achieved by electrodeposition from a choline chloride-based ionic solvent. The different structures and treatments of the carbon materials will create metallic composites with different characteristics. The electrochemical characterization of Sn and Sn composites was performed using chronoamperometry, potentiometry, electrochemical impedance, and cyclic voltammetry. The initial growth stages of Sn and Sn composites were characterized by a glassy-carbon (GC) electrode surface. Nucleation studies were carried out, and the effect of the carbon materials was characterized using the Scharifker and Hills (SH) and Scharifker and Mostany (SM) models. Through a non-linear fitting method, it was shown that the nucleation of Sn and Sn composites on a GC surface occurred through a 3D instantaneous process with growth controlled by diffusion. According to Raman and XRD analysis, carbon materials were successfully incorporated at the Sn matrix. AFM and SEM images showed that the carbon incorporation influences the coverage of the surface as well as the size and shape of the agglomerate. From the analysis of the corrosion tests, it is possible to say that Sn-composite films exhibit a comparable or slightly better corrosion performance as compared to pure Sn films.


2010 ◽  
Vol 21 (8) ◽  
pp. 1088-1091 ◽  
Author(s):  
Xu Jin-Zhong ◽  
Zhu Jun-Jie ◽  
Wu Qiang ◽  
Hu Zheng ◽  
Chen Hong-Yuan

2012 ◽  
Vol 20 ◽  
pp. 19-22 ◽  
Author(s):  
Bertrand Reuillard ◽  
Alan Le Goff ◽  
Charles Agnès ◽  
Abdelkader Zebda ◽  
Michael Holzinger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document