Wind Power Prediction Model Based on ARMA and Improved BP-ANN

2014 ◽  
Vol 1008-1009 ◽  
pp. 183-187
Author(s):  
Hai Ke Liu ◽  
Jiang Xia Feng ◽  
Shen Quan Yang ◽  
Tao Jia

In order to improve the prediction accuracy of wind power, this research is based on time series and improved BP-ANN algorithm. The basic idea is described as follows: wind speed forecasting model is established by using time series method; wind speed-wind power model is built by utilising improved BP-ANN algorithm; wind speed data from time series forecasting is used as input of neural network model, and the prediction results for wind power are obtained. In order to analyse the availability of wind power prediction model, the mean absolute error and correlation coefficient are compared to analyse the predictions results. The results show that the prediction model can effectively improve the forecasting accuracy of wind power.

2013 ◽  
Vol 392 ◽  
pp. 622-627 ◽  
Author(s):  
Xiao Jing Dang ◽  
Hao Yong Chen ◽  
Xiao Ming Jin

In this paper, a method for wind speed forecasting based on Empirical Mode Decomposition and Support Vector machine is proposed. Compared with the approach based on Support Vector machine only, the method in this paper use EMD to decompose the data of wind power into several independent intrinsic mode functions (IMF),then model each component with the SVM model and get the final value of the overall wind power prediction. Experiments show the efficiency of the approach with a higher forecasting accuracy.


2013 ◽  
Vol 748 ◽  
pp. 439-443
Author(s):  
L. Zhou ◽  
E.W. He ◽  
J.C. Wang ◽  
D.H. Chen ◽  
Q.Z. Chen

The application of wind power prediction system (WPPS) contributes to security economic dispatching of power grid and stable operation of wind farm. This paper established short-term prediction model based on BP neural network and ultrashort-term prediction model based on improved time-series algorithm according to Xichang Wind Farm Phase I Project. A new probability model using two consecutive power points before prediction time was built to improve the traditional time-series algorithm. The system framework was designed. C# Language and SQL Server 2008 were taken to develop the system on the Microsoft .net platform. The WPPS uses distributed architecture, realizing seamless connection with the energy management system (EMS) of Xichang dispatching department.


2021 ◽  
pp. 0309524X2110568
Author(s):  
Lian Lian ◽  
Kan He

The accuracy of wind power prediction directly affects the operation cost of power grid and is the result of power grid supply and demand balance. Therefore, how to improve the prediction accuracy of wind power is very important. In order to improve the prediction accuracy of wind power, a prediction model based on wavelet denoising and improved slime mold algorithm optimized support vector machine is proposed. The wavelet denoising algorithm is used to denoise the wind power data, and then the support vector machine is used as the prediction model. Because the prediction results of support vector machine are greatly affected by model parameters, an improved slime mold optimization algorithm with random inertia weight mechanism is used to determine the best penalty factor and kernel function parameters in support vector machine model. The effectiveness of the proposed prediction model is verified by using two groups actually collected wind power data. Seven prediction models are selected as the comparison model. Through the comparison between the predicted value and the actual value, the prediction error and its histogram distribution, the performance indicators, the Pearson’s correlation coefficient, the DM test, box-plot distribution, the results show that the proposed prediction model has high prediction accuracy.


2015 ◽  
Vol 733 ◽  
pp. 893-897
Author(s):  
Peng Yu Zhang

The accuracy of short-term wind power forecast is important for the power system operation. Based on the real-time wind power data, a wind power prediction model using wavelet neural network (WNN) is proposed. In order to overcome such disadvantages of WNN as easily falling into local minimum, this paper put forward using Particle Swarm Optimization (PSO) algorithm to optimize the weight and threshold of WNN. It’s advisable to use Support Vector Machine (SVM) to comparatively do prediction and put two outcomes as input vector for Generalized Regression Neural Network (GRNN) to do nonlinear combination forecasting. Simulation shows that combination prediction model can improve the accuracy of the short-term wind power prediction.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hang Fan ◽  
Xuemin Zhang ◽  
Shengwei Mei ◽  
Junzi Zhang

The rapid development of wind energy has brought a lot of uncertainty to the power system. The accurate ultra-short-term wind power prediction is the key issue to ensure the stable and economical operation of the power system. It is also the foundation of the intraday and real-time electricity market. However, most researches use one prediction model for all the scenarios which cannot take the time-variant and non-stationary property of wind power time series into consideration. In this paper, a Markov regime switching method is proposed to predict the ultra-short-term wind power of multiple wind farms. In the regime switching model, the time series is divided into several regimes that represent different hidden patterns and one specific prediction model can be designed for each regime. The Toeplitz inverse covariance clustering (TICC) is utilized to divide the wind power time series into several hidden regimes and each regime describes one special spatiotemporal relationship among wind farms. To represent the operation state of the wind farms, a graph autoencoder neural network is designed to transform the high-dimensional measurement variable into a low-dimensional space which is more appropriate for the TICC method. The spatiotemporal pattern evolution of wind power time series can be described in the regime switching process. Markov chain Monte Carlo (MCMC) is used to generate the time series of several possible regime numbers. The Kullback-Leibler (KL) divergence criterion is used to determine the optimal number. Then, the spatiotemporal graph convolutional network is adopted to predict the wind power for each regime. Finally, our Markov regime switching method based on TICC is compared with the classical one-state prediction model and other Markov regime switching models. Tests on wind farms located in Northeast China verified the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document