Multi-Agent Based Simulation Model for Rail Transit Evacuation Process

2014 ◽  
Vol 1030-1032 ◽  
pp. 2044-2049
Author(s):  
Can Can Zhao ◽  
Xiao Hong Guo ◽  
Juxihong Julaiti ◽  
Jie Wang

In order to analyze the evacuation behaviors and optimize evacuation strategies for rail transit system, an evacuation agent centered simulation model was proposed. Firstly, by considering the attributes, status and decision-making behaviors of evacuation personnel, the evacuation agent model was established, and the running principle as well as construction process of multi-agent simulation model was discussed. Then, the specific definition and design for the agent attributes and evacuation behavior protocol were provided. Finally, based on the simulation model proposed, an evacuation simulation platform for the military museum station of Beijing subway line 9 was established by using REPAST and JAVA, several evacuation strategies were tested and optimized.

2020 ◽  
Vol 45 (1) ◽  
pp. 17-33
Author(s):  
Maciej Komosinski ◽  
Tomasz Żok

AbstractIn this work, we introduce a simple multi-agent simulation model with two roles of agents that correspond to moral and immoral attitudes. The model is given explicitly by a set of mathematical equations with continuous variables and is characterized by four parameters: morality, protection, and two efficiency parameters. Agents are free to adjust their roles to maximize individual gains. The model is analyzed theoretically to find conditions for its stability, i.e., the fractions of agents of both roles that lead to an equilibrium in their gains. A multi-agent simulation is also developed to verify the dynamics of the model for all values of morality and protection parameters, and to identify potential discrepancies with the theoretical analysis.


Author(s):  
John Wu ◽  
David Ben-Arieh ◽  
Zhenzhen Shi

This research proposes an agent-based simulation model combined with the strength of systemic dynamic mathematical model, providing a new modeling and simulation approach of the pathogenesis of AIR. AIR is the initial stage of a typical sepsis episode, often leading to severe sepsis or septic shocks. The process of AIR has been in the focal point affecting more than 750,000 patients annually in the United State alone. Based on the agent-based model presented herein, clinicians can predict the sepsis pathogenesis for patients using the prognostic indicators from the simulation results, planning the proper therapeutic interventions accordingly. Impressively, the modeling approach presented creates a friendly user-interface allowing physicians to visualize and capture the potential AIR progression patterns. Based on the computational studies, the simulated behavior of the agent–based model conforms to the mechanisms described by the system dynamics mathematical models established in previous research.


Author(s):  
Ulf Lotzmann

In this chapter an agent-based traffic simulation approach is presented which sees agents as individual traffic participants moving in an artificial environment. There is no restriction on types of players, such as car drivers or pedestrians. A concept is introduced which is appropriate to model different kinds of traffic participants and to have them interact with each other in one single scenario. The scenario may not only include roads, but also stadiums, shopping malls and any other situations where pedestrians or vehicles of any kind move around. Core theme of the chapter is an agent model that is founded on a layered architecture. Experiences with implementation and usage of the agent model within the universal multi-agent simulation framework TRASS will be explained by means of several application examples which also support discussion about validation of concept and implementation.


2011 ◽  
Vol 2 (2) ◽  
pp. 105-121 ◽  
Author(s):  
John Wu ◽  
David Ben-Arieh ◽  
Zhenzhen Shi

This research proposes an agent-based simulation model combined with the strength of systemic dynamic mathematical model, providing a new modeling and simulation approach of the pathogenesis of AIR. AIR is the initial stage of a typical sepsis episode, often leading to severe sepsis or septic shocks. The process of AIR has been in the focal point affecting more than 750,000 patients annually in the United State alone. Based on the agent-based model presented herein, clinicians can predict the sepsis pathogenesis for patients using the prognostic indicators from the simulation results, planning the proper therapeutic interventions accordingly. Impressively, the modeling approach presented creates a friendly user-interface allowing physicians to visualize and capture the potential AIR progression patterns. Based on the computational studies, the simulated behavior of the agent–based model conforms to the mechanisms described by the system dynamics mathematical models established in previous research.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4873
Author(s):  
Biao Xu ◽  
Minyan Lu ◽  
Hong Zhang ◽  
Cong Pan

A wireless sensor network (WSN) is a group of sensors connected with a wireless communications infrastructure designed to monitor and send collected data to the primary server. The WSN is the cornerstone of the Internet of Things (IoT) and Industry 4.0. Robustness is an essential characteristic of WSN that enables reliable functionalities to end customers. However, existing approaches primarily focus on component reliability and malware propagation, while the robustness and security of cascading failures between the physical domain and the information domain are usually ignored. This paper proposes a cross-domain agent-based model to analyze the connectivity robustness of a system in the malware propagation process. The agent characteristics and transition rules are also described in detail. To verify the practicality of the model, three scenarios based on different network topologies are proposed. Finally, the robustness of the scenarios and the topologies are discussed.


Author(s):  
Zhongrui Ni ◽  
Zhen Liu ◽  
Tingting Liu ◽  
Yanjie Chai ◽  
Cuijuan Liu

The simulation of a crowd evacuating public buildings can be an important reference in planning the layout of buildings and formulating evacuation strategies. This paper proposes an agent-based crowd model; a crowd evacuation navigation simulation model is proposed for the multi-obstacle environment. We introduce the concept of navigation factor to describe the proximity of the navigation point to the exit. An algorithm for creating navigation points in multi-obstacle environment is proposed along with the global navigation and local navigation control algorithms of the crowd. We construct a crowd evacuation simulation prototype system with different simulation scenes using the scene editor. We conduct the crowd evacuation simulation experiment in the multi-obstacle scene, recording and analyzing the relevant experimental data. The simulation prototype system can be used to derive the evacuation time of the crowd and analyze the evacuation behavior of the crowd. It is expected to provide a visual deduction method for crowd management in an evacuation emergency.


Sign in / Sign up

Export Citation Format

Share Document