Differential Equation Based Adaptive Distance Relaying Setting Method for Series Compensated Line

2014 ◽  
Vol 1044-1045 ◽  
pp. 482-485
Author(s):  
Jin Hu Zhang ◽  
Zhen Yu Xu ◽  
Zhi Peng Su

The distance relays of transmission lines find limitations in the presence of series compensated capacitor. One of them is the distance relay setting issue, in which either over-reach problem or under-reach problem may occur. To deal with this issue, a differential equation based adaptive distance relaying setting method for series compensated line is proposed. As for it do not need to identify whether SC/MOV is in fault loop, not need to know the parameters and the operating states of SC/MOV/GAP, and furthermore, it can be realized without the iterative calculation, it is very suitable to be used for the distance relaying adaptive setting of series compensated line. Simple simulation results certificate the proposed adaptive setting method.

Author(s):  
Win Win Tun ◽  
Ohn Zin Lin ◽  
Han Su Yin

Transmission lines are an important part of a power system. Transmission lines have high power transmission capacity and they are prone to faults of larger magnitudes. Various faults occur in transmission lines. Therefore, protection relays are necessary to protect transmission lines. The purpose of protection system is to interrupt the faulty section from the healthy section because the fault currents may damage the electrical equipments. One of the protection relays is distance relay and it is mainly used in transmission line. Sometimes these relay are used for backup protection. Distance relays for determining the impedance need the voltage and current. Transmission lines are typically protected by distance protection relay. Distance relays are considered of high speed class and can provide transmission lines. Nowadays, numerical distance relays have been used instead of using electromechanical and static distance relays. The proposed model was verified under different tests such as single line to ground (L-G) fault, double line to ground (L-L-G) fault, line to line (L-L) fault and three phase (L-L-L) fault. SimPower System was used for modelling and simulation of distance relay, transmission lines and faults. The simulation results were obtained from MATLAB software shows the feasibility of analysis of transmission line protection with mho type distance relay for single line to ground fault, double line to ground fault, line to line fault and three phase fault at different location of transmission lines. The difficulties understanding on operation of distance relay can be cleared by using MATLAB/SIMULINK software.  


Author(s):  
Loai Mohamed Ali El-Sayed ◽  
Doaa Khalil Ibrahim ◽  
Mahmoud Ibrahim Gilany ◽  
Aboul’Fotouh El’Gharably

Power swing is a power system transient phenomenon that arises due to several reasons including line switching, line outage, sudden increment or decrement in load, faults, etc. Unnecessary tripping during power swing and unnecessary blocking for faults occur during power swing result in distance relay maloperation. Several cascaded outages and major worldwide blackouts have occurred due to maloperation of distance relays. This paper proposes a technique for supervising distance relays during power swing. The proposed online technique discriminates real faults and power swing accurately. It relies on constructing a locus diagram for the current and voltage differences (∆I-∆V) between the two ends of the protected line. The locus is estimated at every power frequency cycle to continuously monitor the state of the line by utilizing the synchrophasor measurements at the sending and receiving ends of the line. The proposed technique is tested for two-area, four-machine power system under faults at different locations of zone-1 and zone-2 regions of distance relays, fault resistances, fault inception angles and slip frequencies using MATLAB software. The simulation results proved the superior improvement of distance relay performance for handling power swing blocking and unblocking actions.


Author(s):  
Cholleti Sriram ◽  
Y. Kusumalatha

To secure the transmission lines against power system faults, the distance relays are mostly used. Distance relay has its own Resistance (R)–Reactance (X) characteristics. Co-ordination of different distance relays is necessary for the fast operation of circuit breaker. Various distance relays which are being tripped with respect to circuit breakers which are attached at individual buses faraway from each other. These relays will be operated with respect to the distance between the occurred fault and relay location. In this paper, detection of three zones using relay characteristics, co-ordination of distance relays and circuit breakers are shown with the faults placed at different locations of an IEEE Nine bus system using MATLAB/Simulink GUI environment. A comparison also made between the relays performance and circuit breaker tripping operation with respect to severe faults at different locations on IEEE Nine bus system.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 979
Author(s):  
Sandeep Kumar ◽  
Rajesh K. Pandey ◽  
H. M. Srivastava ◽  
G. N. Singh

In this paper, we present a convergent collocation method with which to find the numerical solution of a generalized fractional integro-differential equation (GFIDE). The presented approach is based on the collocation method using Jacobi poly-fractonomials. The GFIDE is defined in terms of the B-operator introduced recently, and it reduces to Caputo fractional derivative and other fractional derivatives in special cases. The convergence and error analysis of the proposed method are also established. Linear and nonlinear cases of the considered GFIDEs are numerically solved and simulation results are presented to validate the theoretical results.


Author(s):  
Behzad Asle Mohammad Alizadeh ◽  
Masoud Esmaeili Tayeb ◽  
Reza Razzaghi ◽  
Behnam Mohammadi-Ivatloo

Author(s):  
Balimidi Mallikarjuna ◽  
Pudi Shanmukesh ◽  
Dwivedi Anmol ◽  
Maddikara Jaya Bharata Reddy ◽  
Dusmanta Kumar Mohanta

2013 ◽  
Vol 291-294 ◽  
pp. 2381-2386 ◽  
Author(s):  
Wen Xia Liu ◽  
Ji Kai Xu ◽  
Hong Yuan Jiang ◽  
Yong Tao Shen

It is the foundation for evaluating the reliability of transmission lines to obtain and analyze the original reliability parameters. However, these parameters depend on long- term statistic and calculation. In the case of lacking such parameters in a new project , this paper proposes a method of Principal Component Analysis to obtain the principal component of the impacting factors ,in which various factors affecting reliability parameters are taken into account. Through this method, we can use PCR to obtain the failure rate of the unknown transmission lines on the base of the known credible lines’ rates. The simulation results show that the proposed approach possesses higher forecasting accuracy and provides references for the power system dispatching departments and transmission lines maintenance departments.


Sign in / Sign up

Export Citation Format

Share Document