Coordinated Reactive Power and Voltage Control Based on Doubly-Fed Wind Farm Cluster

2014 ◽  
Vol 1070-1072 ◽  
pp. 224-227
Author(s):  
Li Lin ◽  
Kai Li

Current control strategy of reactive power and voltage for wind power integration is separate control of single wind farm (WF), which cannot achieve the optimal allocation of reactive power and is not beneficial for the optimization of voltage stability and network loss. In this paper, a coordinated control strategy of reactive power and voltage for wind farm cluster is proposed, which takes the voltage stability at point of common coupling (PCC) and economic operation as the optimization goals. The coordinated control strategy is realized through the platform of Cybercontrol industrial configuration, and the application testing verifies the effectiveness of the proposed strategy.

2014 ◽  
Vol 953-954 ◽  
pp. 337-341
Author(s):  
Chao Xu ◽  
Jin Ling Lu ◽  
Jin Long Zhou

A novel inverter control strategy to enhance the transient stability of grid-connected wind farm based on doubly-fed induction generator (DFIG) is presented. Adding transient angle control strategy in the rotor side converter active control loop, this can dissipate the system unbalancing energy and restrain the system oscillations by the variation of wind turbine speed. Adding transient voltage control strategy in reactive control loop, this can provide fast reactive power compensation and support the restoration and reconstruction of the grid voltage when fault occurred. The control strategy which can improve the transient Angle stability and transient voltage stability at the same time is put forward. Finally, a testing system including a DFIG-based wind farm is realized using DigSILENT/Power Factory, the strategy validation and the contribution to power system stability enhancement are verified by simulation.


2013 ◽  
Vol 732-733 ◽  
pp. 745-751 ◽  
Author(s):  
Peng Guo ◽  
Wen Ying Liu ◽  
Wei Wang ◽  
Ning Bo Wang ◽  
Huai Sen Jia

Dynamic voltage instability is one of the new problems with the fast development of wind farm clusters. This text is about the improvement of voltage stability of weak grid connected with wind turbine generators (WTGs). It focuses on the control strategy and mode of WTGs and dynamic reactive compensators during disturbance. Firstly, in order to propel WTGs outputting reactive power, the active control mode regarding both doubly fed induction generators (DFIGs) and permanent magnetic synchronous generators (PMSGs) is given. Secondly, the method of installing SVC at the terminal of part of WTGs is proposed. The selection of WTGs to install SVC is based on the sensitivity analysis. Thirdly, a coordinating method of various reactive sources is discussed. Finally, the comprehensive control logic under time series is listed. The simulation validates the methods above.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6413
Author(s):  
Feng-Chang Gu ◽  
Hung-Cheng Chen

Large-scale wind farms in commercial operations have demonstrated growing influence on the stability of an electricity network and the power quality thereof. Variations in the output power of large-scale wind farms cause voltage fluctuations in the corresponding electrical networks. To achieve low-voltage ride-through capability in a doubly fed induction generator (DFIG) during a fault event, this study proposes a real-time reactive power control strategy for effective DFIG application and a static synchronous compensator (STATCOM) for reactive power compensation. Mathematic models were developed for the DFIG and STATCOM, followed by the development of an indirect control scheme for the STATCOM based on decoupling dual-loop current control. Moreover, a real-world case study on a commercial wind farm comprising 23 DFIGs was conducted. The voltage regulation performance of the proposed reactive power control scheme against a fault event was also simulated. The simulation results revealed that enhanced fault ride-through capability and prompt recovery of the output voltage provided by a wind turbine generator could be achieved using the DFIG along with the STATCOM in the event of a three-phase short-circuit fault.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4848
Author(s):  
Shijia Zhou ◽  
Fei Rong ◽  
Xiaojie Ning

This paper proposes a grouped, reactive power optimization control strategy to maximize the active power output of a doubly-fed induction generator (DFIG) based on a large wind farm (WF). Optimization problems are formulated based on established grouped loss models and the reactive power limits of the wind turbines (WTs). The WTs in the WF are grouped to relieve computational burden. The particle swarm optimization (PSO) algorithm is applied to optimize the distribution of reactive power among groups, and a proportional control strategy is used to distribute the reactive power requirements in each group. Furthermore, the proposed control strategy optimizes the reactive power distribution between the stator and the grid side converter (GSC) in each WT. The proposed control strategy greatly reduces the number of variables for optimization, and increases the calculation speed of the algorithm. Thus, the control strategy can not only increase the active power output of the WF but also enable the WF to track the reactive power dispatching instruction of the power grid. A simulation of the DFIG WF is given to verify the effectiveness of the proposed control strategy at different wind speeds and reactive power references.


2009 ◽  
Vol 12 (8) ◽  
pp. 38-46
Author(s):  
Chuong Trong Trinh

At present, it is very common to find renewable energy resources, especially wind power, connected to distribution systems. The impact of this wind power on voltage distribution levels has been addressed in the literature. The majority of this works deals with the determination of the maximum active and reactive power that is possible to be connected on a system load bus, until the voltage at that bus reaches the voltage collapse point. It is done by the traditional methods of P-V curves reported in many references. Theoretical expression of maximum power limited by voltage stability transfer through a grid is formulated using an exact representation of distribution line with ABCD parameters. The expression is used to plot PV curves at various power factors of a radial system. Limited values of reactive power can be obtained. This paper presents a method to study the relationship between the active power and voltage (PV) at the load bus to identify the voltage stability limit. It is a foundation to build a permitted working operation region in complying with the voltage stability limit at the point of common coupling (PCC) connected wind farm.


2014 ◽  
Vol 986-987 ◽  
pp. 1201-1204
Author(s):  
Chao Li ◽  
Hong Tao Wang ◽  
Zhong Kang Wei ◽  
Chun Yi Wang

Variable-speed constant-frequency (VSCF) wind farms are gradually becoming a significant proportion of generation in weak grids with constantly increasing penetration rate, and it should certainly take responsibility of the grid frequency and voltage stability. Based on the P-Q performance curve of doubly fed induction generator (DFIG), by introducing static synchronous compensator (STATCOM), this paper presents a coordinated control strategy of active power and reactive power to deal with fault and load disturbance in weak grids. Simulation results show that the proposed coordinated control strategy can effectively improve the frequency and voltage stability of the grids.


Sign in / Sign up

Export Citation Format

Share Document