Tailor-Welded Blanks Manufactured and Stamping Properties of Magnesium Alloy

2010 ◽  
Vol 148-149 ◽  
pp. 241-244
Author(s):  
Zhong Tang Wang ◽  
Shi Hong Zhang ◽  
Guang Xia Qi ◽  
Rong Hui Chang

Magnesium alloy tailor-welded blanks(MTWBs) of AZ31 and AZ80 sheet had been manufactured by gas tungsten arc welded(GTAW), which the thickness were 0.8mm. The welding properties of Magnesium alloy sheet had been analyzed, and the technology parameters of GTAW were determined by experiment study, which was that welding thread being Φ2.0mm, welding electricity 50A, welding voltage 9V, welding rate 12—13cm/min. The research results presented that the grain in welded seam was isometric crystal, and the grains were branching crystal in heat-affected zone (HAZ). For MTWBs of AZ31and AZ80 sheet which the thickness was 0.8mm, the forming parameters were that the forming temperature of AZ31 being 190-220°C, and forming temperature of AZ80 being 310°C-350°C, and the temperature of tools is 180°C~200°C.

2010 ◽  
Vol 136 ◽  
pp. 23-27
Author(s):  
Ting Fang Zhang ◽  
Shi Kun Xie

Warm forming of magnesium alloy sheet has attracted more and more attention in recent years. Mechanics tension test has been made in this paper in order to study the constitutive relationship of ME20M magnesium alloy sheet at different temperatures and strain rates. And a constitutive relationship which includes a softening factor has been put forward. Warm deep drawing experiment and numerical simulation on ME20M magnesium alloy sheet have been made in which the attention was focused on the forming temperature. The results showed that the limit deep drawing height of ME20M magnesium alloy sheet can be dramatically improved as the temperature goes up, especially when the temperature was over about 250°C. Simultaneity, it is feasible and effective to add a material model into numerical simulation software by user subroutine.


2011 ◽  
Vol 215 ◽  
pp. 5-8 ◽  
Author(s):  
Jian Luo ◽  
X.M. Wang ◽  
Fei Li ◽  
Quan Xiang Luo

The ZK60 magnesium alloy sheet butt-welded in gas tungsten arc welding with different heat input are analyzed and simulated. A double-ellipsoid heat source and the temperature-dependent thermo-physical properties of ZK60 magnesium alloy sheet are employed for performing a non-linear transient thermal analysis by a finite element method. The effect of heat input on welding seam geometry has been studied. As a calculated result, the welding voltage, welding speed and the welding current are the main factors to determine the welding seam geometry. The different welding temperature fields between the general gas tungsten arc welding (GTAW) and GTAW hybrid a longitudinal electromagnetic field (LMF-GTAW) have been achieved.


2011 ◽  
Vol 138-139 ◽  
pp. 754-758
Author(s):  
X.Q. Cao ◽  
J.W. Wang ◽  
Y. Liu ◽  
Cheng Zhong Chi ◽  
L.C. Li ◽  
...  

The effect of forming temperature on the deep drawability (limit drawing ratio (LDR)) of AZ31 magnesium alloy sheet was studied both numerically and experimentally by the use of finite element analysis software DYNAFORM and specially designed warm deep drawing die set. The simulation model was built by SolidWorks 2009, 3-Parameter_Barlat model with BT shell unit was adopted as material model. The constitutive relation of the material was provided by uniaxial isothermal tension tests at different temperatures. After being set, all parameters were referred to famous explicit dynamic solver LS-DYNA. The simulation results showed that the LDR of the AZ31 magnesium alloy sheet is increased with the increase of the temperature initially, but after the temperature reached 423K, the LDR reached the maximum, and then decrease with the increase of temperature in the temperature range studied (room temperature-673K). PTEF was used as lubricant in the experiment. Experimental results showed same trend as numerical simulation results in the studied range of temperature, and LDR reached the maximum of 3.0 at 423K. It is shown that the results of numerical simulation have a good agreement with that of the experiment. By analyzing the microstructure of the drawn-cup walls at different temperatures, it is found that grains were stretched along the direction of tension at temperatures lower than 423K. And there appeared a large number of fine recrystallized grains when forming temperature is 423K showing that dynamic recrystallization occurred during forming process. Dynamic recrystallization conducted completely when forming temperature increased higher than 423K, but the material softening would aggravate with the increase of temperature and on the contrary would do harm to the deep drawing of AZ31 magnesium alloy sheet, resulting the decrease of LDR.


2013 ◽  
Vol 302 ◽  
pp. 140-145 ◽  
Author(s):  
Xin Wu Ma ◽  
Fang Wang ◽  
Guo Qun Zhao

The assembly of the limiting dome height tests is developed to evaluate the formability of the magnesium alloy sheet AZ31B. The influence of forming conditions on the formability of AZ31B sheet is investigated by limiting dome height tests. The limiting bulging coefficient is used to represent the formability of AZ31B sheet in the tests. The sheet thickness, forming temperature, punch speed and lubrication are taken as influence factors in the tests. The experimental results show that the sheet of thickness 0.6mm has better formability and the proper forming temperature is about 200~250°C for AZ31B sheet. The low punch speed and good lubrication can also improve the formability of AZ31B sheet.


2005 ◽  
Vol 15 (1) ◽  
pp. 25-30
Author(s):  
Yong-Gil Kim ◽  
Hak-Kyu Choi ◽  
Min-Cheol Kang ◽  
Hae-Yong Jeong ◽  
Cha-Hurn Bae

2013 ◽  
Vol 668 ◽  
pp. 321-324 ◽  
Author(s):  
Guo Hong Ma ◽  
Jun Nie ◽  
Chao Yang Zhang ◽  
Jia Ye

Through a large number of technology experiments, finding out the matching parameters of the DE-GMAW welding of the AZ31B magnesium alloy sheet based on the DSC. This paper simply controls the motor based on the DSC to control the welding torches moving comfortably to make the welding process stable to obtain the good weld.


Sign in / Sign up

Export Citation Format

Share Document