Thermal Errors Simulation and Modeling of Motorized Spindle

2010 ◽  
Vol 154-155 ◽  
pp. 1305-1309 ◽  
Author(s):  
Liang Yu Cui ◽  
Da Wei Zhang ◽  
Wei Guo Gao ◽  
Xiang Yang Qi ◽  
Yu Shen

Thermal errors of motorized spindle are of great importance to affect final machining precision of CNC machine tool. Thermal characteristics simulation analysis of motorized spindle is realized by ANSYS; thermal errors test measurement is completed based on 5-point method; and prediction models of thermal errors are constructed by multiple linear regression (MLR) method, Back Propagation (BP) neural network method and Radial Basis Function (RBF) neural network method respectively. The results of simulation and experiments illustrate that simulation results can represent thermal characteristics of motorized spindle, whose degree of confidence mainly depending on setting of thermal load and boundary conditions properly or not; RBF neural network model has highest prediction precision for thermal errors of motorized spindle based on test data.

Methods for evaluation the manufacturability of a vehicle in the field of production and operation based on an energy indicator, expert estimates and usage of a neural network are stated. By using the neural network method the manufacturability of a car in a complex and for individual units is considered. The preparation of the initial data at usage a neural network for predicting the manufacturability of a vehicle is shown; the training algorithm and the architecture for calculating the manufacturability of the main units are given. According to the calculation results, comparative data on the manufacturability vehicles of various brands are given.


Sign in / Sign up

Export Citation Format

Share Document