Stability Analysis of a Class of Switched Lurie Systems

2010 ◽  
Vol 171-172 ◽  
pp. 584-587
Author(s):  
Bei Xing Mao ◽  
Dong Xiao Wang

Stability problem of a class of Lurie switched systems is investigated. All the subsystems of a class of switched systems are Lurie systems .The switching law is given using linear matrix inequality(LMI) and Lyapunov functions . The conclusion is given in LMI, so it is easy to realize.

Author(s):  
WEI-LING CHIANG ◽  
CHENG-WU CHEN ◽  
FENG-HSIAG HSIAO

This paper is concerned with the stability problem of nonlinear interconnected systems. Each of them consists of a few interconnected subsystems which are approximated by Takagi–Sugeno (T–S) type fuzzy models. In terms of Lyapunov's direct method, a stability criterion is derived to guarantee the asymptotic stability of interconnected systems. It is shown that the stability analysis problems of nonlinear interconnected systems can be reduced to linear matrix inequality (LMI) problems via suitable Lyapunov functions and T–S fuzzy techniques. Finally, numerical examples with simulations are given to demonstrate the validity of the proposed approach.


Author(s):  
Sara Dadras ◽  
Soodeh Dadras ◽  
HamidReza Momeni

A design of linear matrix inequality (LMI)-based fractional-order surface for sliding-mode controller of a class of uncertain fractional-order nonlinear systems (FO-NSs) is proposed in this paper. A new switching law is achieved guaranteeing the reachability condition. This control law is established to obtain a sliding-mode controller (SMC) capable of deriving the state trajectories onto the fractional-order integral switching surface and maintain the sliding motion. Using LMIs, a sufficient condition for existence of the sliding surface is derived which ensures the t−α asymptotical stability on the sliding surface. Through a numerical example, the superior performance of the new fractional-order sliding mode controller is illustrated in comparison with a previously proposed method.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Pu Xing-cheng ◽  
Yuan Wei

This paper develops some criteria for a kind of hybrid stochastic systems with time-delay, which improve existing results on hybrid systems without considering noises. The improved results show that the presence of noise is quite involved in the stability analysis of hybrid systems. New results can be used to analyze the stability of a kind of stochastic hybrid impulsive and switching neural networks (SHISNN). Therefore, stability analysis of SHISNN can be turned into solving a linear matrix inequality (LMI).


Sign in / Sign up

Export Citation Format

Share Document