Distributed Battery Management System in Battery Electric Vehicle

2011 ◽  
Vol 201-203 ◽  
pp. 2427-2430
Author(s):  
Yuan Liao ◽  
Ju Hua Huang ◽  
Qun Zeng

According to the features of lithium ion battery packs, a distributed battery management system (BMS) for battery electric vehicle (BEV) is designed in this article. The BMS consists of a master module with several sampling modules. The kernel of master module is TMS320C2812 digital signal processor, and the kernel of sampling module is P87C591 singlechip. The main functions of master module include estimation of state of charge (SOC) and security management of lithium ion battery packs, and the main functions of sampling module include battery information collection and CAN bus based communication. SOC estimation method based on Extended Kalman filtering (EKF) theory is adopted in this article to precisely estimate the SOC of lithium ion battery packs.

2020 ◽  
Author(s):  
Wu-Yang Sean ◽  
Ana Pacheco

Abstract For reusing automotive lithium-ion battery, an in-house battery management system is developed. To overcome the issues of life cycle and capacity of reused battery, an online function of estimating battery’s internal resistance and open-circuit voltage based on adaptive control theory are applied for monitoring life cycle and remained capacity of battery pack simultaneously. Furthermore, ultracapacitor is integrated in management system for sharing peak current to prolong life span of reused battery pack. The discharging ratio of ultracapacitor is adjusted manually under Pulse-Width-Modulation signal in battery management system. In case study in 52V LiMnNiCoO2 platform, results of estimated open-circuit voltage and internal resistances converge into stable values within 600(s). These two parameters provide precise estimation for electrical capacity and life cycle. It also shows constrained voltage drop both in the cases of 25% to 75% of ultracapacitors discharging ratio compared with single battery. Consequently, the Life-cycle detection and extending functions integrated in battery management system as a total solution for reused battery are established and verified.


2021 ◽  
Vol 2089 (1) ◽  
pp. 012017
Author(s):  
Ramu Bhukya ◽  
Praveen Kumar Nalli ◽  
Kalyan Sagar Kadali ◽  
Mahendra Chand Bade

Abstract Now a days, Li-ion batteries are quite possibly the most exceptional battery-powered batteries; these are drawing in much consideration from recent many years. M Whittingham first proposed lithium-ion battery technology in the 1970s, using titanium sulphide for the cathode and lithium metal for the anode. Li-ion batteries are the force to be reckoned with for the advanced electronic upset in this cutting-edge versatile society, solely utilized in cell phones and PC computers. A battery is a Pack of cells organized in an arrangement/equal association so the voltage can be raised to the craving levels. Lithium-ion batteries, which are completely utilised in portable gadgets & electric vehicles, are the driving force behind the digital technological revolution in today’s mobile societies. In order to protect and maintain voltage and current of the battery with in safe limit Battery Management System (BMS) should be used. BMS provides thermal management to the battery, safeguarding it against over and under temperature and also during short circuit conditions. The battery pack is designed with series and parallel connected cells of 3.7v to produce 12v. The charging and releasing levels of the battery pack is indicated by interfacing the Arduino microcontroller. The entire equipment is placed in a fiber glass case (looks like aquarium) in order to protect the battery from external hazards to design an efficient Lithium-ion battery by using Battery Management System (BMS). We give the supply to the battery from solar panel and in the absence of this, from a regular AC supply.


2019 ◽  
Vol 68 (5) ◽  
pp. 4110-4121 ◽  
Author(s):  
Rui Xiong ◽  
Yongzhi Zhang ◽  
Ju Wang ◽  
Hongwen He ◽  
Simin Peng ◽  
...  

2020 ◽  
Vol 35 (2) ◽  
pp. 2088-2099 ◽  
Author(s):  
Markos Koseoglou ◽  
Evangelos Tsioumas ◽  
Nikolaos Jabbour ◽  
Christos Mademlis

Sign in / Sign up

Export Citation Format

Share Document