Optimization of Phase Change Materials Used in Asphalt Pavement to Prevent Rutting

2011 ◽  
Vol 219-220 ◽  
pp. 1375-1378 ◽  
Author(s):  
Mei Zhu Chen ◽  
Jing Hong ◽  
Shao Peng Wu ◽  
Wan Lu ◽  
Guang Ji Xu

Rutting is a common and serious phenomenon in asphalt pavement especially in high temperature areas. Phase change material (PCM) can adjust temperature through storing and releasing thermal energy during phase change process and has been used in thermal energy storage areas and building materials. However, the use of PCM to regulate the temperature of asphalt pavement has not been widely studied. In this paper, the feasibility of temperature self-control asphalt pavement using PCM was studied for preventing rutting. The temperature-control mechanism of asphalt pavement with PCM has been presented. The selection criteria of PCM used in asphalt pavement have been made. Meanwhile, a paraffin/expanded graphite shape-stabled phase change material with a phase change temperature range of 40°C~50°C has been used in this study. The temperature rising test of asphalt concrete showed that sample with PCM exhibited a lower temperature than the control sample, which indicates that it is feasible to use PCM in asphalt pavement for lowering temperature and preventing rutting.

RSC Advances ◽  
2014 ◽  
Vol 4 (74) ◽  
pp. 39552-39557 ◽  
Author(s):  
Zhonghao Rao ◽  
Xinyu You ◽  
Yutao Huo ◽  
Xinjian Liu

The nano-encapsulated phase change materials (PCM), which have several good thermophysical properties, were proposed as potential for thermal energy storage.


2013 ◽  
Vol 683 ◽  
pp. 106-109
Author(s):  
Xiao Gang Zhao ◽  
Ying Pan

Phase change materials, abbreviated as PCM, due to the excellent heat storage performance, have been used as building materials and got more and more attention in recent years. The article introduce the building application of phase change material, and discuss its contribution to the building energy saving.


2018 ◽  
Vol 70 ◽  
pp. 01010
Author(s):  
Marta Kuta ◽  
Dominika Matuszewska ◽  
Tadeusz Michał Wójcik

Increasing energy consumption in residential and public buildings requires development of new technologies for thermal energy production and storage. One of possibilities for the second listed need is the use of phase change materials (PCMs). This work is focused on solutions in this area and consists of two parts. First one is focused on different designs of thermal energy storage (TES) tanks based on the phase change materials. The second part is the analysis of tests results for TES tank containing shelf and tube heat exchanger and filled with phase change material. Thermal energy storage tank is analyzed in order to use it in domestic heating and hot utility water installations. The aim of this research was to check the applicability of phase change material for mentioned purpose. Results show that using phase change materials for thermal energy storage can increase amount of stored heat. The use of properly selected PCM and heat exchanger enables the process of thermal energy storing and releasing to become more efficient.


RSC Advances ◽  
2020 ◽  
Vol 10 (14) ◽  
pp. 8097-8103 ◽  
Author(s):  
Wenbin Wang ◽  
Huimin Cao ◽  
Jingyi Liu ◽  
Shifang Jia ◽  
Lin Ma ◽  
...  

Phase change energy storage wood (PCESW) was prepared by using microencapsulated phase change materials (MicroPCM) as thermal energy storage (TES) materials and wood as the matrix.


2019 ◽  
Vol 111 ◽  
pp. 01002
Author(s):  
Yong-Kwon Kang ◽  
Beom-Jun Kim ◽  
Soo-Yeol Yoon ◽  
Jae-Weon Jeong

This study proposes a phase change material for use in radiant cooling panels integrated with thermoelectric modules (PCM–TERCP) and evaluates its performance characteristics during the solidification and melting process of phase change materials in design conditions. The PCM–TERCP consists of phase change materials (PCMs), thermoelectric modules (TEMs), and aluminumpanels. TEMs operate to freeze the PCM, and PCM stores the cooling thermal energy to maintain the constant surface temperature of the panel for radiant cooling. The main purpose of thermal energy storage systems is the shift of the electricity consumption from day-time to night-time during the summer season. Therefore, PCM–TERCP can implement off-peak operation according to which energy is expected to be saved. The melting temperature of PCM and the target surface temperatures of the bottom panels of PCM–TERCP were designed to be 16°C. Additionally, the room temperature and mean radiant temperature (MRT) was set to 24°C, while the thickness of the PCM pouch was 10 mm. As a result, the solidification process required 4 h and the total input power was 0.528 kWh. Correspondingly, the melting process can operate passively over a period of 4 h. In most cases, the operating temperature was lower than 19°C, which validates the temperature response of PCM–TERCP.


Sign in / Sign up

Export Citation Format

Share Document