A Design in the Optimal Precision Forging Process about Half Axle Gears

2011 ◽  
Vol 230-232 ◽  
pp. 274-277
Author(s):  
Ying Tong

The rigid-visco-plastic finite element model for the hot forging process of half axle gear was established, and the enclosed-die forging processes with different process parameters were simulated. As for the present forming process, the main influence factors on precision forming quality were identified and analyzed. The results show that proper die structure and cavity dimensions, suitable web thickness and position can improve material filling effect, which ensures gear tooth dimensions.

2010 ◽  
Vol 44-47 ◽  
pp. 2832-2836
Author(s):  
Ying Tong

The rigid-visco-plastic finite element model for the hot forging process of transmission shaft flange yoke was established, and two forging schemes of different male die shapes were simulated. As for the present forming process, the forming defects were indentified and analyzed. Based on the simulating results the decision-making process was obtained, and a preforming die and a final forming die with proper structures and longer life were designed. The transmission shaft flange yoke part produced by this process is excellent in dimension tolerance and mechanical property. This process is profitable reference for producing the similar type of forks with complex shape.


2011 ◽  
Vol 130-134 ◽  
pp. 2326-2329
Author(s):  
Wen Lin Chen ◽  
Li Jing Peng ◽  
Yong Ma ◽  
Shao Yang Wang ◽  
Zhi Jie Li ◽  
...  

In order to get high quality forgings, it is significant to predict the microstructure evolution during hot forging process accurately. In this study, a simulation model is built by combining FEM with the dynamic recrystallization model of 42CrMo, and the finite element model is proved to be reliable by a serial of upsetting deformation experiment. Then the distributions of microstructure evolution are obtained on upsetting process. Upsetting is beneficial to refine the grain size and drawing can make the distribution of grain size homogeneous. By comparing the simulation results with experiments, the distributions of microstructure are a close match in the middle part of steering arm. The forgings formed by this process have a good microstructure and have high comprehensive mechanical properties.


2013 ◽  
Vol 554-557 ◽  
pp. 638-646 ◽  
Author(s):  
Antonino Ducato ◽  
Livan Fratini ◽  
Fabrizio Micari

In the present paper a numerical FEM model for the analysis of a forming process of a complex shape component is presented. The model, developed using the commercial implicit code DEFORM™, can take into account both the thermo-mechanical evolution and the microstructural evolution of the considered material. In this case the Ti-6Al-4V titanium alloy was because it was possible to carry out a very good characterization into a FEM ambient. In particular the code can calculate the phase distribution of the main phases of the alloy as consequence of the thermo-mechanical history of the material during a hot forging process. At the end of the simulation the output data was showing to analyze the validity and the quality of the model by a numerical point of view.


2011 ◽  
Vol 189-193 ◽  
pp. 2792-2795
Author(s):  
Cheng Yang ◽  
Sheng Dun Zhao ◽  
Jian Jun Zhang

Based on precision forging method, a single stage hot forging process of alternator poles is put forword, which the heated blank can be forging by only one press in a special closed die. In the last this process is verified by the software of Deform-3D which is employed rigid-plastic FEM method.


2020 ◽  
Vol 107 (1-2) ◽  
pp. 39-47
Author(s):  
Luana De Lucca de Costa ◽  
Alberto Moreira Guerreiro Brito ◽  
André Rosiak ◽  
Lirio Schaeffer

2014 ◽  
Vol 81 ◽  
pp. 480-485 ◽  
Author(s):  
Takefumi Arikawa ◽  
Daisuke Yamabe ◽  
Hideki Kakimoto

2011 ◽  
Vol 311-313 ◽  
pp. 2348-2352
Author(s):  
Ming Ming Ding ◽  
Ju Chen Xia ◽  
Lei Deng ◽  
Jun Song Jin

Brake piston is a huge demand non straight wall cavity part for the typical automotive industry; the traditional processing method is machine processing, or preforming by cold extrusion, and then machining. In this paper, the combined cold precision forging method of cold extrusion and spinning was proposed, which might improve the overall performance of parts and reduce costs. The rigid plastic finite element model of cold extrusion and spinning was established to simulate the forming process. The results showed that the combined cold precision forging method was available to manufacture non-straight wall cavity piston.


Sign in / Sign up

Export Citation Format

Share Document