Slurry Shield Tunnelling in Clayey Soils: Typical Problems and Countermeasures

2011 ◽  
Vol 243-249 ◽  
pp. 2944-2947
Author(s):  
Zhong Miao Zhang ◽  
Cun Gang Lin ◽  
Shi Ming Wu

The distinguishing characteristics of clay are high cohesion and low permeability. For slurry shield tunnelling in clayey soils, favorable aspects are that slurry cake with low permeability can be established more easily and effectively at the excavation face thanks to clay’s high cohesion, which is advantageous for stability of excavation face, and long stand-up time of clay offers enough time for backfilling of the tail void before collapse of surrounding soils, thus lessening ground volume loss. However, some typical problems are encountered due to clay’s high cohesion and low permeability. One primary problem is the clogging of slurry pipeline, once in case of which, slurry pressure will fluctuate severely, thus inducing unstable condition at the excavation face. In extreme cases, the pipeline bursts and soils at the excavation face collapse towards the cutterhead for immediate drop of slurry pressure. Another common problem is clay’s adhesion to the cutterhead, which weakens the excavation efficiency of cutterhead and limits advance rate of the shield machine. Tunnelling will inevitably disturb surrounding soils and excess pore water pressure occurs. In clayey soils, due to clay’s low permeability, it usually takes quite a long time for the excess pore water pressure to disperse completely. The consolidation settlements associated with pore water dispersing account for a large percentage of the total settlements. Accumulated ground settlements threaten structures and pipelines nearby. For these problems encountered during slurry shield tunnelling in clayey soils, both preventive and counter measures are put forward in detail in this study. The proposed measures can be used as a reference to avoid, mitigate and deal with problems encountered during slurry shield tunnelling in clayey soils.

2016 ◽  
Vol 53 (9) ◽  
pp. 1460-1473 ◽  
Author(s):  
Dharma Wijewickreme ◽  
Achala Soysa

The cyclic shear response of soils is commonly examined using undrained (or constant-volume) laboratory element tests conducted using triaxial and direct simple shear (DSS) devices. The cyclic resistance ratio (CRR) from these tests is expressed in terms of the number of cycles of loading to reach unacceptable performance that is defined in terms of the attainment of a certain excess pore-water pressure and (or) strain level. While strain accumulation is generally commensurate with excess pore-water pressure, the definition of unacceptable performance in laboratory tests based purely on cyclic strain criteria is not robust. The shear stiffness is a more fundamental parameter in describing engineering performance than the excess pore-water pressure alone or shear strain alone; so far, no criterion has considered shear stiffness to determine CRR. Data from cyclic DSS tests indicate consistent differences inherent in the patterns between the stress–strain loops at initial and later stages of cyclic loading; instead of relatively “smooth” stress–strain loops in the initial parts of loading, nonsmooth changes in incremental stiffness showing “kinks” are notable in the stress–strain loops at large strains. The point of pattern change in a stress–strain loop provides a meaningful basis to determine the CRR (based on unacceptable performance) in cyclic shear tests.


2011 ◽  
Vol 261-263 ◽  
pp. 1534-1538
Author(s):  
Yu Guo Zhang ◽  
Ya Dong Bian ◽  
Kang He Xie

The consolidation of the composite ground under non-uniformly distributed initial excess pore water pressure along depth was studied in two models which respectively considering both the radial and vertical flows in granular column and the vertical flow only in granular column, and the corresponding analytical solutions of the two models were presented and compared with each other. It shows that the distribution of initial excess pore water pressure has obvious influence on the consolidation of the composite ground with single drainage boundary, and the rate of consolidation considering the radial-vertical flow in granular column is faster than that considering the vertical flow only in granular column.


2012 ◽  
Vol 193-194 ◽  
pp. 1010-1013
Author(s):  
Shu Qing Zhao

The construct to precast pile in thick clayey soil can cause the accumulation of excess pore water pressure. The high excess pore pressure can make soil, buildings and pipes surrounded have large deflection, even make them injured. Combining with actual projects, this paper presents an in-situ model test on the changes of excess pore water pressure caused by precast pile construct. It is found that the radius of influence range for single pile driven is about 15m,the excess pore water pressure can reach or even exceed the above effective soil pressure, and there are two relatively stable stages.


2012 ◽  
Vol 446-449 ◽  
pp. 1621-1626 ◽  
Author(s):  
Yan Mei Zhang ◽  
Dong Hua Ruan

A practical saturated sand elastic-plastic dynamic constitutive model was developed on the base of Handin-Drnevich class nonlinear lag model and multidimensional model. In this model, during the calculation of loading before soil reaches yielding, unloading and inverse loading, corrected Handin-Drnevich equivalent nonlinear model was adopted; after soil yielding, based on the idea of multidimensional model, the composite hardening law which combines isotropy hardening and follow-up hardening, corrected Mohr-Coulomb yielding criterion and correlation flow principle were adopted. A fully coupled three dimension effective stress dynamic analysis procedure was developed on the base of this model. The seismic response of liquefaction foundation reinforced by stone columns was analyzed by the developed procedure. The research shows that with the diameter of stone columns increasing, the excess pore water pressure in soil between piles decreases; with the spacing of columns increasing, the excess pore water pressure increases. The influence of both is major in middle and lower level of composite foundation.


2011 ◽  
Vol 2011 ◽  
pp. 1-12
Author(s):  
Mohammed Y. Fattah ◽  
Kais T. Shlash ◽  
Nahla M. Salim

The problem of the proposed “Baghdad metro line” which consists of two routes of 32 km long and 36 stations is analyzed. The tunnel is circular in cross-section with a 5.9 m outer diameter. The finite element analyses were carried out using elastic-plastic and modified Cam clay models for the soil. The excavation has been used together with transient effects through a fully coupled Biot formulation. All these models and the excavation technique together with Biot consolidation are implemented into finite-element computer program named “Modf-CRISP” developed for the purpose of these analyses. The results indicate that there is an inward movement at the crown and this movement is restricted to four and half tunnel diameters. A limited movement can be noticed at spring line which reaches 0.05% of tunnel diameter, while there is a heave at the region below the invert, which reaches its maximum value of about 0.14% of the diameter and is also restricted to a region extending to 1.5 diameters. The effect of using reduced zone on excess pore water pressure and surface settlement (vertical and horizontal) was also considered and it was found that the excess pore water pressure increases while the settlement trough becomes deeper and narrower using reduced .


Sign in / Sign up

Export Citation Format

Share Document