Direct Displacement Based Seismic Design of High Rise Structures with Strengthened Stories (I) - Theory

2011 ◽  
Vol 250-253 ◽  
pp. 2176-2185
Author(s):  
Ke Jia Yang ◽  
Xing Wen Liang ◽  
Lin Zhu Sun

High rise structures with strengthened stories are widely used nowadays. A rational seismic design procedure for this kind of structure is thus necessary. Based on mode theory and direct displacement based seismic design of multi-story buildings, this paper proposed a new direct displacement based seismic design procedure. In the proposed method, each mode of the high rise structure is equivalent to a single degree of freedom (SDOF) system. Seismic response of each mode is calculated and adds up to consider the contributions of higher modes. Considering the characteristic of strengthened stories, two stories above the strengthened stories are taken as the “key stories”, whose performance indicates the performance of the building. The proposed procedure is logical, simple and can serve for reference of actual design.

2011 ◽  
Vol 250-253 ◽  
pp. 2186-2195
Author(s):  
Ke Jia Yang ◽  
Lin Zhu Sun ◽  
Lian Meng Chen

Based on mechanical characteristics of high rise structures with strengthened stories, the author performed direct displacement based seismic design on a high rise structure with 2 strengthened stories according to the direct displacement based seismic design principle. The performance levels are set to be “serviceability” under medium earthquake and “life safety” under major earthquake, respectively. The design procedures are with the following features: (1) Definition and selection of “key” stories are based on mechanical characteristics of high rise structures with strengthened stories; (2) Determination of mode number and calculation of horizontal earthquake action verified the availability of the design procedure; (3) some new ideas are proposed to improve the earthquake action calculation and structural performance control. The design procedure verified the effectiveness, feasibility and availability of the proposed direct displacement based seismic design method.


2015 ◽  
Vol 31 (2) ◽  
pp. 969-998 ◽  
Author(s):  
Farhad Ahmadi ◽  
Marios Mavros ◽  
Richard E. Klingner ◽  
Benson Shing ◽  
David McLean

In this paper, a displacement-based seismic design procedure is presented for reinforced masonry shear-wall structures, with the objective of being more consistent, transparent, and practical than current force-based seismic design procedures. The procedure anticipates the formation of a plastic mechanism at specified target displacements, calculates the local deformation demands associated with that mechanism, and ensures that those local deformation demands remain below deformation capacities for flexure-dominated and shear-dominated wall segments. Guidelines to determine the target displacements and effective damping properties for reinforced masonry wall structures are provided. The proposed procedure and guidelines are used in a trial application to design a full-scale, two-story reinforced masonry shear-wall system.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Shanshan Li ◽  
Ping Xiang ◽  
Biao Wei ◽  
Lu Yan ◽  
Ye Xia

Displacement-based seismic design methods support the performance-based seismic design philosophy known to be the most advanced seismic design theory. This paper explores one common type of irregular-continuous bridges and studies the prediction of their elastoplastic displacement demand, based on a new nonlinear static procedure. This benefits to achieve the operation of displacement-based seismic design. Three irregular-continuous bridges are analyzed to advance the equivalent SDOF system, build the capacity spectrum and the inelastic spectrum, and generate the new nonlinear static analysis. The proposed approach is used to simplify the prediction of elastoplastic displacement demand and is validated by parametric analysis. The new nonlinear static procedure is also used to achieve the displacement-based seismic design procedure. It is tested by an example to obtain results which show that after several combinations of the capacity spectrum (obtained by a pushover analysis) and the inelastic demand spectrum, the simplified displacement-based seismic design of the common irregular-continuous bridges can be achieved. By this design, the seismic damage on structures is effectively controlled.


Sign in / Sign up

Export Citation Format

Share Document