nonlinear static procedure
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 10)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Vol 23 (2) ◽  
pp. 131-137
Author(s):  
Pamuda Pudjisuryadi ◽  
F. Wijaya ◽  
R. Tanuwijaya ◽  
B.C. Prasetyo ◽  
Benjamin Lumantarna

One design alternative of earthquake resistant building is Partial Capacity Design (PCD) method. Unlike the commonly used capacity design method, PCD allows a safe failure mechanism which is called partial sidesway mechanism. In this mechanism, all beams and some columns are allowed to experience plastic damages while some selected columns are designed to remain elastic (called elastic columns). A new approach to predict the required strengths needed to design each structural member, called modified-PCD (M-PCD) is proposed. In this research six- and ten-story reinforced concrete buildings were designed using M-PCD, and their seismic performances are investigated. The base shear force resisted by the elastic columns was set to approximately 70% of the total base shear. Both nonlinear static procedure (NSP) and nonlinear dynamic procedure (NDP) are used to analyze the structures. The results show that the expected partial side sway mechanism is observed, and the drifts of the buildings are acceptable.


Author(s):  
Mrs. Ramatai Somwanshi

The main objective of this study is, evaluation damage index of reinforced concrete moment resisting frames by” NONLINEAR STATIC PROCEDURE” nonlinear static analysis includes the capacity spectrum method (CSM) that uses the intersection of the capacity (pushover) curve and a reduced response spectrum to estimate maximum displacement in terms of damage of building. Nonlinear static procedure is simple and practical method for static damage index. For this purpose, first some functions are derived to estimate damage to the structure using pushover analysis and then designed procedure is proposed. In this study damage function is estimated by using correlation between park-ang damage index (NLDD) and nonlinear static damage index (NLSD) which is based on the pushover analysis. For this purpose dynamic and static damage damage analysis are performed on several concrete frames subjected to various earthquake acceleration records. So the detail explanation is found in this study.


2021 ◽  
Vol 374 ◽  
pp. 111044
Author(s):  
Thuong Anh Nguyen ◽  
Pierre Labbé ◽  
Guillaume Hervé-Secourgeon

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Shanshan Li ◽  
Ping Xiang ◽  
Biao Wei ◽  
Lu Yan ◽  
Ye Xia

Displacement-based seismic design methods support the performance-based seismic design philosophy known to be the most advanced seismic design theory. This paper explores one common type of irregular-continuous bridges and studies the prediction of their elastoplastic displacement demand, based on a new nonlinear static procedure. This benefits to achieve the operation of displacement-based seismic design. Three irregular-continuous bridges are analyzed to advance the equivalent SDOF system, build the capacity spectrum and the inelastic spectrum, and generate the new nonlinear static analysis. The proposed approach is used to simplify the prediction of elastoplastic displacement demand and is validated by parametric analysis. The new nonlinear static procedure is also used to achieve the displacement-based seismic design procedure. It is tested by an example to obtain results which show that after several combinations of the capacity spectrum (obtained by a pushover analysis) and the inelastic demand spectrum, the simplified displacement-based seismic design of the common irregular-continuous bridges can be achieved. By this design, the seismic damage on structures is effectively controlled.


2020 ◽  
Author(s):  
Marco Baiguera ◽  
Tiziana Rossetto

<p>Many coastal regions lying on subduction zones are likely to experience the catastrophic effects of cascading earthquake and tsunami observed in recent events. The response of the structure to tsunami is difficult to quantify through damage observations from past events, which often provide information on the combined effects of both perils. Hence, the use of analytical methodologies is fundamental. The authors have recently proposed a nonlinear static pushover procedure for the design and assessment of structures for tsunami within the framework of ASCE 7-16 provisions. The latter offer a comprehensive and practical methodology for the design of structures for tsunami loads and effects. While they provide prescriptive tsunami loading and design requirements, they also permit the use of performance-based analysis tools. However, the specifics of load application protocol, and system and component evaluation are not specified. Through the proposed approach, the user can estimate the effective lateral-resisting capacity of a building. In addition, by applying the component loading procedure, the user can identify the structural elements that may need to be strengthened to meet the code acceptance criteria. For this purpose, a prototypical reinforced concrete multi-storey building exposed to high tsunami hazard in the USA Northwest Pacific coast is assessed. Based on the acceptance criteria of ASCE 7-16 provisions, the lateral-load resisting system needs to be strengthened to resist tsunami loading. Overall, the use of the tsunami nonlinear static analysis procedure is found to significantly reduce the extra-costs associated with tsunami strengthening of the building.</p>


Sign in / Sign up

Export Citation Format

Share Document