Study on Properties of Self-Compacting Concrete with Recycled Powder

2011 ◽  
Vol 250-253 ◽  
pp. 866-869 ◽  
Author(s):  
Hong Zhu Quan

To utilize the recycled powder as concrete additives, self-compaceing concerte with recycled powder, granulated blast-furnace slag and granulated limestone were tested for slump-flow, compressive strength, modulus of elasticity and drying shrinkage. Reduction in superplasticizing effect of high-range water reducer was found for concrete with recycled powder. Compressive strength of concrete with recycled powder were the same as those with granulated limestone, and lower than those with granulated blast-furnace slag. Concrete with recycled powder showed lower elastic modulus and higher drying shrinkage than those with granulated blast-furnace slag and granulated limestone. The addition of granulated blast-furnace slag together with recycled powder to self-compacting concrete improved superplasticizing effect of high-range water reducer and properties of concrete.

2018 ◽  
Vol 12 (1) ◽  
pp. 430-440 ◽  
Author(s):  
Hongzhu Quan ◽  
Hideo Kasami

Introduction:Although hundreds million tons of concrete wastes have been generated annually in China, the use of recycled aggregate for concrete is limited because of low density and high absorption due to adhered cement paste and mortar.Methods:A new method to produce high quality recycled aggregate by heating and grinding concrete rubbles to separate cement portions adhering to aggregate was developed recently. In this process by-product powder with the fineness of 400m2/kg is generated. By-product recycled fine powder consists of fine particles of hydrated cement and crushed aggregate. To use the recycled fine powder as concrete additives two series of experiments were performed to make clear of the effect of recycled fine powder.Results and Conclusion:Self-compacting concrete with recycled fine powder, granulated blast furnace slag and granulated limestone were tested for slump flow, compressive strength, modulus of elasticity and drying shrinkage. Reduction in super plasticizing effect of high range water reducer was found for concrete with recycled powder. Compressive strength of concrete with recycled fine powder was the same as those with granulated limestone, and lower than those with granulated blast furnace slag. Concrete with recycled fine powder showed lower elastic modulus and higher drying shrinkage than those with granulated blast furnace slag and granulated limestone. The recycled fine powder is usable for self-compacting concrete without further processing, despite the possible increase in dosage of high range water reducer for a given slump flow and in drying shrinkage. The addition of granulated blast furnace slag together with recycled powder to self-compacting concrete improved super plasticizing effect of high range water reducer and properties of concrete.


2015 ◽  
Vol 16 (SE) ◽  
pp. 509-517
Author(s):  
Fatemeh Sayyahi ◽  
Hamid Shirzadi

 In this study, the properties of concrete with different amounts of Ground Granulated Blast-Furnace Slag (GGBFS) has been studied. In another part, the test deals to assess the properties of concrete containing GGBFS with micro-SiO2. The results show that the slag has pozzolan properties and its use up to 20% in the concrete, has no harmful effect on concrete properties. The simultaneous use of micro-SiO2 with blast furnace slag have little effect, as well as micro-SiO2 covers the defects caused by the use of slag. The results indicate that the use of micro-SiO2 and slag has good effects on the strength of concrete up to a certain age, so that its compressive strength is increased. Water-cement ratio was 0.42 and 12.5 mm for maximum size of aggregate and cement content in concrete was 425 kg per cubic meter. Compressive strength of concrete samples was measured at ages 7, 28, 56 and 90-day and flexural and tensile strength and water absorption after 28-day and 90 days also was measured.


2012 ◽  
Vol 575 ◽  
pp. 100-103 ◽  
Author(s):  
Dong Sheng Shi ◽  
Ping Han ◽  
Zheng Ma ◽  
Jing Bo Wang

In this paper, the experiment about compressive strength of concrete using granulated blast furnace slag as fine aggregate was introduced. In this experiment, granulated blast furnace slag fine aggregates that were produced by two different steel factory and natural river sands that came from two different producing area were been used, and compressive strength of concrete for testing were four levels from ordinary strength level to high strength level. As results, the compressive strength of concrete that used granulated blast furnace slag as fine aggregate increase with increasing of concrete age as good as the concrete used nature river sand. At the early age of 3 days and 7days, whether water-cement ratio, the compressive strength of concrete using slag fine aggregate is always lower than concrete using river sand. At the long age of 91 days, the compressive strength of concrete using slag fine aggregate exceed the concrete using river sand when water-cement ratio was greater than 30%. The compressive strength of concrete using granulated blast furnace slag as fine aggregate can exceed 80N/mm2, the granulated blast furnace slag can be used in high-strength concrete.


2020 ◽  
Vol 13 (2) ◽  
pp. 111
Author(s):  
Anni Susilowati ◽  
Pratikto Pratikto ◽  
Dennis Yudha Praditya ◽  
Kusno Wijayanto

Self Compacting Concrete (SCC) as one type of concrete that is mostly used in building construction has good workability and can be obtained by adding filler instead of cement. Ground Granulated Blast Furnace Slag (GGBFS) has a chemical composition similar to the content in cement. Therefore, the study of the use of GGBFS was used as a partial substitute for cement in the SCC to examine the influences and quality of GGBFS on fresh concrete and to obtain SCC with the best compressive strength. This research method uses an experimental method by making SCC concrete specimens with an initial fas of 0.4 according to ACI 211.4R-93. The specimens were worked using GGBFS levels of 0%, until 80%, and using 1,4% superplasticizer, and 2% accelerator by weight of cement. The use of GGBFS at SCC can increase the value of compressive strength of about 4,27%-25,64 compared to SCC without using GGBFS. The resulted are known that GGBFS can influence compression strength. Based on the testing of fresh and hard concrete, it concluded that the best quality of SCC used 20% of GGBFS.


2014 ◽  
Vol 1033-1034 ◽  
pp. 878-881
Author(s):  
Yan Yan Hu ◽  
Ting Shu He ◽  
Xian Zhe Zhang

High-strength concrete in the autoclaved-curing was made by the way of mixing single and double doped. The compressive strength of concrete and the morphology of hydrates in concrete containing ground granulated blast-furnace slag (SG) and Quartz sand (QS) have been investigated using XRD and SEM measurements. The results show that quartz sand also possesses effective pozzolanic property in the steam-autoclaved stage. The mixed proportion of QP:SG=1:1 is the best when the dose is 30%.The paste became denser through double mixing. When the doses is 10-35%, SG for the improvement of concrete compressive strength is higher than the quartz sand.


2019 ◽  
Vol 8 (4) ◽  
pp. 5045-5049

This paper enumerates strength gain efficiency of Rice Husk Ash (Rha) and Ground Granulated Blast Furnace Slag (Gbbfs) blend in Self-Compacting Concrete (SCC). From the precious studies carried by the authors it was observed that optimal use of Rha+Ggbfs in low and medium strength concretes imparts initial strengths and also later strengths. In low and medium strength SCC mixes, Ggbfs replaces OPC optimally (30%) and Rha replaces Ggbfs optimally (3%) but in case of high strength SCC mixes, RHA replacing Ggbfs does not offer the required workability or strength so instead of replacing Ggbfs by certain amount, Rha is added to the SCC. It was found that GGBFS does not yield the required workability so RHA is added to GGBFS based SCC. So after various trial mixes it was found that 25% GGBFS by weight of OPC and 5% RHA by weight of GGHFS is added to OPC. It was observed that 5% RHA addition to OPC made with 25% Ggbfs gives desired workability and strength. Due to addition of GGBFS to SCC will enhance the later age compressive strength but early age compressive strength decreases while the desired workability is controlled using SP appropriately. In M60 GGBFS+RHA based SCC, the strength increase at 3 days is nearly 33% and the compressive strength at 28 days decreased by 10%. Similarly tensile strength in a GGBFS and RHA admixed SCC increases by around 27% in M60 grade.


Sign in / Sign up

Export Citation Format

Share Document