Effect of Ground Quartz Sand and Ground Granulated Blast-Furnace Slag on Properties of High-Strength Concrete in the Steam and Autoclaved Curing

2014 ◽  
Vol 1033-1034 ◽  
pp. 878-881
Author(s):  
Yan Yan Hu ◽  
Ting Shu He ◽  
Xian Zhe Zhang

High-strength concrete in the autoclaved-curing was made by the way of mixing single and double doped. The compressive strength of concrete and the morphology of hydrates in concrete containing ground granulated blast-furnace slag (SG) and Quartz sand (QS) have been investigated using XRD and SEM measurements. The results show that quartz sand also possesses effective pozzolanic property in the steam-autoclaved stage. The mixed proportion of QP:SG=1:1 is the best when the dose is 30%.The paste became denser through double mixing. When the doses is 10-35%, SG for the improvement of concrete compressive strength is higher than the quartz sand.

2012 ◽  
Vol 575 ◽  
pp. 100-103 ◽  
Author(s):  
Dong Sheng Shi ◽  
Ping Han ◽  
Zheng Ma ◽  
Jing Bo Wang

In this paper, the experiment about compressive strength of concrete using granulated blast furnace slag as fine aggregate was introduced. In this experiment, granulated blast furnace slag fine aggregates that were produced by two different steel factory and natural river sands that came from two different producing area were been used, and compressive strength of concrete for testing were four levels from ordinary strength level to high strength level. As results, the compressive strength of concrete that used granulated blast furnace slag as fine aggregate increase with increasing of concrete age as good as the concrete used nature river sand. At the early age of 3 days and 7days, whether water-cement ratio, the compressive strength of concrete using slag fine aggregate is always lower than concrete using river sand. At the long age of 91 days, the compressive strength of concrete using slag fine aggregate exceed the concrete using river sand when water-cement ratio was greater than 30%. The compressive strength of concrete using granulated blast furnace slag as fine aggregate can exceed 80N/mm2, the granulated blast furnace slag can be used in high-strength concrete.


Structures built with normal concrete are fading out from the construction industry due to the development of high strength concrete. The massive structures such as sky scrapers, bridges, tunnels, nuclear plants, underground structures need high strength concrete to withstand the high intensity vertical, horizontal and moving loads etc. The development of high strength alkaline activated concrete will reduce the usage of cement in construction community. Lesser the utilisation of cement will lessen the high emission of carbon dioxide gas into the atmosphere. In this study, high strength concrete using alumina and silica rich materials are made with a mix ratio of 1:1.31:2.22. The water to cement ratio for high strength cement concrete and the alkaline solution to binder ratio for alkaline activated concrete are kept as 0.35. Low calcium fly ash, Ground Granulated Blast Furnace Slag (GGBS) and Metakaolin are used as binders and Manufacturing Sand is used as fine aggregate to made high strength alkaline activated concrete. The high strength alkaline activated concrete tests results are better than the high strength cement concrete.


Sign in / Sign up

Export Citation Format

Share Document