Fine Crystalline Phase Dispersion in Zr-Based Bulk Metallic Glass by Laser Irradiation

2007 ◽  
Vol 26-28 ◽  
pp. 747-750
Author(s):  
R. Ikutomo ◽  
Masato Tsujikawa ◽  
Makoto Hino ◽  
Hisamichi Kimura ◽  
Kunio Yubuta ◽  
...  

Bulk metallic glass (BMG) exhibits remarkable properties such as high strength, good stiffness and good corrosion resistance. However, the wear resistance of amorphous metals is not excellent as expected their high strength. It is thought that large local shear bands easily change into cracks for debris formation. The effective obstruction of shear band formation might be applied to improve the wear resistance of BMG. In this study, we tried to suppress shear band deformation by fine crystalline phase dispersion formed by semi-conductor laser irradiation. The microstructures of irradiated Zr-based BMG specimens were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The fine dispersions of crystalline phases are observed in the amorphous matrix. The optimum condition for laser irradiation was discussed.

Author(s):  
R. Ikutomo ◽  
Masato Tsujikawa ◽  
Makoto Hino ◽  
Hisamichi Kimura ◽  
Kunio Yubuta ◽  
...  

2000 ◽  
Vol 644 ◽  
Author(s):  
Paul A. El-Deiry ◽  
Richard P. Vinci ◽  
Nicholas Barbosa ◽  
T. C. Hufnagel

AbstractWe have studied the development of shear band structure in a Zr57Ti5Cu20Ni8Al10 bulk metallic glass during deformation. In order to investigate the relationship between shear band development and serrated flow, we performed uniaxial compression tests in an environmental scanning electron microscope (ESEM). During the deformation, load-time data and surface images were simultaneously recorded. In the stress-time data, stress drops or “serrated flow” appear to correlate to new shear band formation. The majority of the shear bands we observed were at an angle of 45° with respect to the compression axis. In addition, we measured shear offset as a function of position along the shear band. We observed two different offset behaviors: Consistent offset along the length of a shear band, and offset that is localized into part of the band. The localized offset behavior could be evidence for dislocation-like displacement increments, or could be the result of a transition in the failure mode.


2009 ◽  
Vol 618-619 ◽  
pp. 437-441
Author(s):  
Hao Wen Xie ◽  
Peter D. Hodgson ◽  
Cui E Wen

Vickers and nano indentations were performed on a structurally relaxed Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass (BMG), and the evolution of the shear bands in the relaxed BMG was investigated and compared to that in the as-cast alloy. Results indicate that the plastic deformation in the BMG with structure relaxation is accommodated by the semicircular (primary) and radial (secondary) as well as tertiary shear bands. Quantitatively, the shear band density in the relaxed alloy was much lower than that in the as-cast alloy. The annihilation of free volume caused by the annealing was responsible for the embrittlement of the sample with structure relaxation.


2008 ◽  
Vol 23 (8) ◽  
pp. 2133-2138 ◽  
Author(s):  
H. Guo ◽  
J. Wen ◽  
N.M. Xiao ◽  
Z.F. Zhang ◽  
M.L. Sui

In a compression test for a Zr-based bulk metallic glass, a dominant shear band was preserved before fracture by a cylindrical stopper. A heat-affected zone (HAZ) ∼10 μm thick together with shear band was discovered in the center of the deformed sample by preferential ion milling. By using a low aspect ratio sample for compression, diverse micron-scaled HAZs among multiple shear bands were also revealed. Based on above experimental results and the isothermal source model, it was found that the thickness of shear band and its HAZ increased continuously with the progression of shear deformation.


2005 ◽  
Vol 87 (15) ◽  
pp. 151907 ◽  
Author(s):  
Junji Saida ◽  
Albertus Deny Heri Setyawan ◽  
Hidemi Kato ◽  
Akihisa Inoue

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1670
Author(s):  
Abhilash Gunti ◽  
Parijat Pallab Jana ◽  
Min-Ha Lee ◽  
Jayanta Das

The effect of cold rolling on the evolution of hardness (H) and Young’s modulus (E) on the rolling-width (RW), normal-rolling (NR), and normal-width (NW) planes in Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vitreloy 1) bulk metallic glass (BMG) was investigated systematically using nanoindentation at peak loads in the range of 50 mN–500 mN. The hardness at specimen surface varied with cold rolling percentage (%) and the variation is similar on RW and NR planes at all the different peak loads, whereas the same is insignificant for the core region of the specimen on the NW plane. Three-dimensional (3D) optical surface profilometry studies on the NR plane suggest that the shear band spacing decreases and shear band offset height increases with the increase of cold rolling extent. Meanwhile, the number of the pop-in events during loading for all the planes reduces with the increase of cold rolling extent pointing to more homogeneous deformation upon rolling. Calorimetric studies were performed to correlate the net free volume content and hardness in the differently cold rolled specimens.


Author(s):  
A. V. Sergueeva ◽  
N. A. Mara ◽  
J. D. Kuntz ◽  
E. J. Lavernia ◽  
A. K. Mukherjee *

Sign in / Sign up

Export Citation Format

Share Document