band spacing
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 13)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Chittarajan NAYAK ◽  
Shuvendu Jena ◽  
Satyam Rout ◽  
Bhuvneshwer Suthar ◽  
Dinesh V. Udupa

Abstract Here we would like to discuss the light transmission modulation by the one-dimensional polymeric quasi-multilayer which is formed according to substitutional generalized Octonacci with PMMA and PS as the constituent materials. In particular, we will present some theoretical findings using the well-known transfer matrix method. PBG inter-band spacing and depth can be managed by choosing the appropriate generation number. The number of PBGs is the same while increasing in the generation number and are shifted symmetrically towards the designed frequency. It also reveals the aroused forbidden frequency band can be manipulated by changing the applied hydrostatic pressure and the thickness of the constituent polymeric materials. The increase in pressure shows a blue shift in the PBGs while the increase in thickness of the polymeric material provides a redshift to PBGs. The proposed structure could be another possible system for optical device design specially multi-band tunable optical reflectors.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Vivek Jani ◽  
Mohammed I Aslam ◽  
Weikang Ma ◽  
Henry Gong ◽  
Anthony Cammarato ◽  
...  

Patients with left heart failure and reduced ejection fraction (HFrEF) have variable RV failure that, if present, drastically worsens outcomes. In a cohort of 21 HFrEF patients from two hospital sites, we have previously shown (Aslam et al, Eur J HF; 2020: volume 23, pages 339-341) that like global function, RV myocyte maximum calcium-activated myocyte tension (T max ) is quite variable (COV 27%). To determine if a relationship between RV myocyte function and indices of RV chamber function exists, we trained a random forest classifier based on 41 clinical variables, including hemodynamic, laboratory, and echocardiographic data, and queried the importance of each. This revealed that the most predictive model for reduced T max was based on the pulmonary artery pulsatility index (PAPi), an established clinical index of RV failure. To gain insight into potential mechanisms for depressed T max in HFrEF patients with a low PAPi, we obtained small angle x-ray diffraction patterns in 5 HFrEF patients with depressed PAPi and T max and compared this to 5 non-failing (NF) controls. The equatorial intensity ratio I(1,1)/I(1,0) was reduced in low T max RV muscle fibers vs. controls (0.250.06 vs. 0.180.02, P<0.0001), suggesting myosin heads are more associated with the thick filament backbone. In meridional reflections, we find a significant decrease in M3 band spacing (14.340.03 nm in NF vs. 14.300.01 nm in HFrEF; P=0.0013) suggesting more myosin heads are in the “OFF” configuration. The latter may underly tension reduction in RV myocytes from failing RV HFrEF patients. Ongoing studies will examine these structural changes in HFrEF patients with a broader range of PAPi and T max to test if this association applies. These findings focus attention on thick filament structural and configuration abnormalities as potential culprits underlying RV disease in HFrEF. Further studies using novel sarcomere enhancers will test if these changes can be remedied, and if so, in which patients.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1670
Author(s):  
Abhilash Gunti ◽  
Parijat Pallab Jana ◽  
Min-Ha Lee ◽  
Jayanta Das

The effect of cold rolling on the evolution of hardness (H) and Young’s modulus (E) on the rolling-width (RW), normal-rolling (NR), and normal-width (NW) planes in Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vitreloy 1) bulk metallic glass (BMG) was investigated systematically using nanoindentation at peak loads in the range of 50 mN–500 mN. The hardness at specimen surface varied with cold rolling percentage (%) and the variation is similar on RW and NR planes at all the different peak loads, whereas the same is insignificant for the core region of the specimen on the NW plane. Three-dimensional (3D) optical surface profilometry studies on the NR plane suggest that the shear band spacing decreases and shear band offset height increases with the increase of cold rolling extent. Meanwhile, the number of the pop-in events during loading for all the planes reduces with the increase of cold rolling extent pointing to more homogeneous deformation upon rolling. Calorimetric studies were performed to correlate the net free volume content and hardness in the differently cold rolled specimens.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Naoki Nishiyama ◽  
Kohtaro Ujiie ◽  
Masayuki Kano

AbstractSlow slip and tremor (SST) downdip of the seismogenic zones may trigger megathrust earthquakes by frequently transferring stress to seismogenic zones. Geodetic observations have suggested that the recurrence intervals of slow slip decrease toward the next megathrust earthquake. However, temporal variations in the recurrence intervals of SST during megathrust earthquake cycles remain poorly understood because of the limited duration of geodetic and seismological monitoring of slow earthquakes. The quartz-filled, crack-seal shear veins in the subduction mélange deformed near the downdip limit of the seismogenic zone in warm-slab environments record cyclic changes in the inclusion band spacing in the range from 4 ± 1 to 65 ± 18 μm. The two-phase primary fluid inclusions in quartz between inclusion bands exhibit varying vapor/liquid ratios regardless of inclusion band spacing, suggesting a common occurrence of fast quartz sealing due to a rapid decrease in quartz solubility associated with a large fluid pressure reduction. A kinetic model of quartz precipitation, considering a large fluid pressure change and inclusion band spacing, indicates that the sealing time during a single crack-seal event cyclically decreased and increased in the range from 0.16 ± 0.04 to 2.7 ± 0.8 years, with one cycle lasting at least 27 ± 2 to 93 ± 5 years. The ranges of sealing time and duration of a cycle may be comparable to the recurrence intervals of SST and megathrust earthquakes, respectively. We suggest that the spatial change in inclusion band spacing is a potential geological indicator of temporal changes in SST recurrence intervals, particularly when large fluid pressure reduction occurs by brittle fracturing.


2021 ◽  
Author(s):  
Naoki Nishiyama ◽  
Kohtaro Ujiie ◽  
Masayuki Kano

&lt;p&gt;Repeated slow earthquakes downdip of the seismogenic zones may trigger megathrust earthquakes by transferring stress to the seismogenic zones. Geodetic observations have suggested that the recurrence intervals of slow earthquakes decrease toward a next megathrust earthquake. However, the temporal variation in recurrence intervals of slow earthquakes during megathrust earthquake cycles remains poorly understood due to the limited duration of geodetic and seismological monitoring of slow earthquakes. The quartz-filled, crack-seal shear veins in the subduction m&amp;#233;lange deformed near the downdip limit of seismogenic zone in warm-slab environments record the cyclic changes in the inclusion band spacing in the range of 5&amp;#8211;65 &amp;#956;m. The two-phase primary fluid inclusions in quartz between inclusion bands show various vapor/liquid ratios regardless of inclusion band spacing, suggesting a common occurrence of fast quartz sealing due to a rapid decrease in quartz solubility associated with a large fluid pressure reduction. A kinetic model of quartz precipitation, considering a large fluid pressure change and inclusion band spacings, indicates that the sealing time during a single crack-seal event cyclically decreased and increased in the range of 0.2&amp;#8211;2.7 years, with minimum one cycle duration estimated to be 31&amp;#8211;93 years. The ranges of sealing time and one cycle duration may be comparable to the recurrence intervals of slow earthquakes and megathrust earthquakes, respectively. We suggest that the spatial change in the inclusion band spacing is a potential geological indicator of the temporal changes in slow earthquake recurrence intervals, particularly when large fluid pressure reduction occurred by brittle fracturing.&lt;/p&gt;


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 102
Author(s):  
Zhongpeng Zheng ◽  
Chenbing Ni ◽  
Yun Yang ◽  
Yuchao Bai ◽  
Xin Jin

Previous studies have reported significant differences in the Johnson-Cook (J-C) parameters of Ti6Al4V alloy. Thus, various serrated chip morphologies, cutting forces, and cutting temperatures are obtained when different constitutive parameters are used for numerical and simulation analyses, which decreases the reliability of the simulation model. Therefore, it is necessary to investigate and analyze simulation errors due to differences in the J-C parameters. In this study, the mechanism of the serrated chip formation of Ti6Al4V is thoroughly analyzed using the uniformly proportional J-C parameters. The serrated chip sensitivity, shear band spacing, serrated segmentation frequency, chip serration intensity, temperature field, strain energy, and cutting force is obtained. This study aims to improve the accuracy and reliability of the micro-cutting simulation models, as well as a reference for the selection of J-C constitutive parameters of simulation with Ti6Al4V manufactured with different heat treatments and additive manufacturing.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 57886-57896
Author(s):  
Lourdes Martinez-Lopez ◽  
Rosalba Martinez-Lopez ◽  
Alexander E. Martynyuk ◽  
Jorge Rodriguez-Cuevas ◽  
Henry Fabian-Gongora ◽  
...  

2020 ◽  
Vol 51 (6) ◽  
pp. 2532-2541
Author(s):  
Carl Slater ◽  
Claire Davis

AbstractWith increased efforts across the steel industry to produce steel in more economical ways, interest in near net shape casting has increased. Although much has been reported on the production of exotic alloys via these methods, to make the investment in new casting equipment, capability to produce current high value steels by these methods would derisk the capital expenditure. This study assesses the production of a dual phase steel (DP800) by belt casting and compared to that of conventional continuous casting. Although a drop in yield and tensile strength was seen in the belt cast-produced material, the increased elongation allowed for a comparable/improved UTS × elongation factor. A combination of in situ dendrite measurements, thermal modeling, and lab-scale belt casting has allowed insight into the relationship between cast thickness and final band spacing. The inherent lack of deformation of near net shape casting results in coarser band spacing and is not accounted for by the refinement of the secondary arm spacing caused by the faster solidification rates. This limits the strength achievable for a given martensite volume fraction. This has been predicted across the full range of casting thicknesses (1 to 230 mm) and good agreement has been shown with experimental results.


2020 ◽  
Vol 14 (5) ◽  
pp. 374-380
Author(s):  
Chi‐Feng Chen ◽  
Jhong‐Jhen Li ◽  
Kai‐Wei Zhou ◽  
Ruey‐Yi Chen ◽  
Zu‐Cing Wang ◽  
...  
Keyword(s):  

Langmuir ◽  
2019 ◽  
Vol 35 (34) ◽  
pp. 11167-11174 ◽  
Author(s):  
Li Li ◽  
Shujing Zhang ◽  
Meiling Xue ◽  
Xiaoli Sun ◽  
Zhongjie Ren ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document