Ground State and Transport Property in Superconductors with Artificial Pinning Arrays

2011 ◽  
Vol 306-307 ◽  
pp. 398-403
Author(s):  
Qing Bao Ren ◽  
Zhen Chun Zhou ◽  
Jun Zheng ◽  
Meng Bo Luo

The dynamics of a two-dimensional vortex system in superconductors with periodic artificial columnar pinning is studied. The ground state at field B = 3Bf can be either anisotropic or isotropic, dependent on pinning strength and size, here Bf is the matching field where the number of vortices equals that of pins. The transport curves are dependent on the ground vortex structures and anisotropic ground structure may result in anisotropic velocity-force curve. Results indicate that the ground structure can be detected from the transport property. We also discover that a jump in velocity-force curve accompanies a structure transition.

2021 ◽  
pp. 149463
Author(s):  
Bing Lv Calculation ◽  
Xiaona Hu ◽  
Ning Wang ◽  
Jia Song ◽  
Xuefei Liu ◽  
...  

2005 ◽  
Vol 74 (6) ◽  
pp. 1702-1705 ◽  
Author(s):  
H. Kageyama ◽  
T. Kitano ◽  
N. Oba ◽  
M. Nishi ◽  
S. Nagai ◽  
...  

2000 ◽  
Vol 63 (1) ◽  
Author(s):  
F. Graner ◽  
Y. Jiang ◽  
E. Janiaud ◽  
C. Flament

2018 ◽  
Vol 207 ◽  
pp. 233-250 ◽  
Author(s):  
Javier Segarra-Martí ◽  
Vishal K. Jaiswal ◽  
Ana Julieta Pepino ◽  
Angelo Giussani ◽  
Artur Nenov ◽  
...  

A computational strategy to simulate two-dimensional electronic spectra (2DES) is introduced, which allows characterising ground state conformations of flexible nucleobase aggregates that play a crucial role in nucleic acid photochemistry.


2002 ◽  
Vol 16 (20n22) ◽  
pp. 3101-3104
Author(s):  
L. BALICAS ◽  
J. S. BROOKS ◽  
K. STORR ◽  
S. UJI ◽  
M. TOKUMOTO ◽  
...  

We investigate by electrical transport the field-induced superconducting state (FISC) in the organic conductor λ- (BETS) 2 FeCl 4. Below 4 K, antiferromagnetic-insulator, metallic, and eventually superconducting (FISC) ground states are observed with increasing in-plane magnetic field. The FISC state survives between 18 and 41 T, and can be interpreted in terms of the Jaccarino-Peter effect, where the external magnetic field compensates the exchange field of aligned Fe 3+ ions. We further argue that the Fe 3+ moments are essential to stabilize the resulting singlet, two-dimensional superconducting state. Here we provide experimental evidence indicating that this state, as well as the insulating antiferromagnetic ground state, is extremely sensitive to hydrostatic pressure.


Sign in / Sign up

Export Citation Format

Share Document