exchange field
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 29)

H-INDEX

25
(FIVE YEARS 2)

Author(s):  
Mohammad Alipour zadeh ◽  
Yaser Hajati ◽  
Imam Makhfudz

Abstract Existing resonant tunneling modes in the shape of line-type resonances can improve the transport properties of the junction. Motivated by the unique structural properties of monolayer WSe2 e.g. significant spin-orbit coupling (SOC) and large direct bandgap, the transport properties of a normal/ferromagnetic/normal (NFN) WSe2 junction with large incident angles in the presence of exchange field (h), off-resonance light (∆Ω) and gate voltage (U) is studied. In a certain interval of U, the transmission shows a gap with optically controllable width, while outside it, the spin and valley resolved transmissions have an oscillatory behavior with respect to U. By applying ∆Ω (h), an optically (electrically) switchable perfect spin and valley polarizations at all angles of incidence have been found. For large incident angles, the transmission resonances change to spin-valley-dependent separated ideal line-type resonant peaks with respect to U, resulting in switchable perfect spin and valley polarizations, simultaneously. Furthermore, even in the absence of U, applying h or ∆Ω at large incident angles can give some spin-valley dependent ideal transmission peaks, making h or ∆Ω a transmission valve capable of giving a switchable fully spinvalley filtering effect. These findings suggest some alternate methods for providing high-efficiency spin and valley filtering devices based on WSe2.


Author(s):  
MengYao Li ◽  
Yang Yang ◽  
Jingguo Hu ◽  
TingMin Liu ◽  
Yong Chun Tao

Abstract We present an anomalous Josephson effect in a TI-based Josephson junction with a ferromagnetic insulator (FI) trilayer which has noncoplanar magnetizations. It is shown that there exist equal spin-singlet and -triplet correlations due to the magnetism-tuning chiral Dirac energy band structure combined with the spin precession and selective equal spin Andreev reflection by chiral Majorana modes (CMMs). The consequent anomalous Josephson supercurrent is exhibited, in which a 0-π or similar 0 - π state transition through phase shift is induced only by exchange field strengths of the first FI region, while the ϕ0 supercurrent and the maximum one gradually drop with the increase of exchange field strengths of the second and third FI regions without relative state transitions. The much different features are found by varying the lengths of trilayer. The Andreev bound states without hybridization for the CMM administrate these features, which could be used to probe and confirm the zero energy CMM. In addition, the corresponding free energies are presented and discussed.


Author(s):  
Ilya A. Nechaev ◽  
Eugene Krasovskii

Abstract A theoretical study is presented of the effect of an in-plane magnetic exchange field on the band structure of centrosymmetric films of noble metals and topological insulators. Based on an ab initio relativistic k·p theory, a minimal effective model is developed that describes two coupled copies of a Rashba or Dirac electronic system residing at the opposite surfaces of the film. The coupling leads to a structural gap at Γ and causes an exotic redistribution of the spin density in the film when the exchange field is introduced. We apply the model to a nineteen-layer Au(111) film and to a five-quintuple-layer Sb2Te3 film. We demonstrate that at each film surface the exchange field induces spectrum distortions similar to those known for Rashba or Dirac surface states with an important difference due to the coupling: At some energies, one branch of the state loses its counterpart with the oppositely directed group velocity. This suggests that a large-angle electron scattering between the film surfaces through the interior of the film is dominant or even the only possible for such energies. The spin-density redistribution accompanying the loss of the counterpart favors this scattering channel.


2021 ◽  
Vol 8 (9) ◽  
pp. 207-217
Author(s):  
ELVIS SELASE APHU ◽  
Ekor Sophia Enyonam Abra

The expanding improvement of data innovation and communication has delivered a wide impact on commerce processes. The Web has made it conceivable to reach universal markets as the foremost successful means of electronic showcasing or marketing with worldwide scope. Be that as it may, in Ghana, numerous companies were ignorant of the need of utilizing different showcasing and online promoting strategies and their impacts on companies' circumstances until basic circumstances such as this so-called pandemic. This article looks at the definitions and standards of showcasing and online deals, e-commerce, their pros and cons to thrust companies and teach to utilize this kind of marketing and business. This ponder demonstrates that this sort of promoting and exchange as a vital and competitive advantage has contributed altogether to deals development and expanded the share of the inner and outside market share to Ghanaian companies within the competitive age. With the expanding world competition and the predominance of the Coronavirus, get to worldwide markets has gotten to be more complicated, and the require for modern worldwide devices and strategies can be of incredible offer assistance in this respect. The shrewd utilize of e-commerce innovation can offer assistance Ghanaian companies move forward exchange proficiency, make more dynamic cooperation within the worldwide exchange field and offer assistance fortify the country’s position on territorial and worldwide markets.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zainab Gholami ◽  
Farhad Khoeini

AbstractThe spin-dependent Seebeck effect (SDSE) and thermal spin-filtering effect (SFE) are now considered as the essential aspects of the spin caloritronics, which can efficiently explore the relationships between the spin and heat transport in the materials. However, there is still a challenge to get a thermally-induced spin current with no thermal electron current. This paper aims to numerically investigate the spin-dependent transport properties in hybrid graphene/silicene nanoribbons (GSNRs), using the nonequilibrium Green’s function method. The effects of temperature gradient between the left and right leads, the ferromagnetic exchange field, and the local external electric fields are also included. The results showed that the spin-up and spin-down currents are produced and flow in opposite directions with almost equal magnitudes. This evidently shows that the carrier transport is dominated by the thermal spin current, whereas the thermal electron current is almost disappeared. A pure thermal spin current with the finite threshold temperatures can be obtained by modulating the temperature, and a negative differential thermoelectric resistance is obtained for the thermal electron current. A nearly zero charge thermopower is also obtained, which further demonstrates the emergence of the SDSE. The response of the hybrid system is then varied by changing the magnitudes of the ferromagnetic exchange field and local external electric fields. Thus, a nearly perfect SFE can be observed at room temperature, whereas the spin polarization efficiency is reached up to 99%. It is believed that the results obtained from this study can be useful to well understand the inspiring thermospin phenomena, and to enhance the spin caloritronics material with lower energy consumption.


Sign in / Sign up

Export Citation Format

Share Document