Electro-Hydraulic Servo System Controlled by Index Reaching Law Sliding Mode

2011 ◽  
Vol 317-319 ◽  
pp. 1490-1494 ◽  
Author(s):  
Bao Quan Jin ◽  
Yan Kun Wang ◽  
Ya Li Ma

The parameters uncertainty and external disturbance play a negative role to improve electro-hydraulic position servo system performance. The valve controlled cylinder system model is established, using the traditional PID control strategy and reaching law control strategy for simulating the system, respectively, the two methods have similar control effects in the ideal model, but considering the external disturbances, the index approaches sliding mode control law has better response speed and stability. Research shown that sliding mode control algorithm has an important role for improving the performance of hydraulic servo position control system.

2015 ◽  
Vol 741 ◽  
pp. 655-658 ◽  
Author(s):  
Cai Yun Dong ◽  
Hai Jun Wang ◽  
Wen Yong Cui

The sliding mode control approach based on double power exponential reaching law is proposed for the hydraulic servo system. With the example of the hydraulic servo system in the lab, the mathematic model is established and the new controller is presented and simulated. Simulation results show that: the proposed approach has high track precision, fast response, small chattering and ensures dynamic quality of the system.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1676
Author(s):  
Gexin Chen ◽  
Pengshuo Jia ◽  
Guishan Yan ◽  
Huilong Liu ◽  
Wenbin Chen ◽  
...  

In this paper, a control strategy combining the feedback linearization theory and sliding mode variable structure theory is proposed to solve various nonlinear factors, uncertainty of external disturbance and high-precision pressure control problems in the Direct-Drive Volume Control (DDVC) electro-hydraulic servo system. The nonlinear mathematical model of the DDVC electro-hydraulic servo system is established, and the nonlinear factors in the system are accurately linearized by the feedback linearization theory. The uncertainty of external disturbance in the system is compensated by the sliding mode control variable structure theory. The feedback-linearized sliding mode control algorithm proposed in this paper is verified using the DDVC electro-hydraulic servo system experimental platform. The experimental results show that, compared with the classical PID control, the proposed control algorithm can effectively improve the pressure output precision, as well as the dynamic response characteristics, of the DDVC system.


Robotica ◽  
2018 ◽  
Vol 36 (11) ◽  
pp. 1701-1727 ◽  
Author(s):  
Mohd Ariffanan Mohd Basri

SUMMARYThe quadrotor aerial robot is a complex system and its dynamics involve nonlinearity, uncertainty, and coupling. In this paper, an adaptive backstepping sliding mode control (ABSMC) is presented for stabilizing, tracking, and position control of a quadrotor aerial robot subjected to external disturbances. The developed control structure integrates a backstepping and a sliding mode control approach. A sliding surface is introduced in a Lyapunov function of backstepping design in order to further improve robustness of the system. To attenuate a chattering problem, a saturation function is used to replace a discontinuous sign function. Moreover, to avoid a necessity for knowledge of a bound of external disturbance, an online adaptation law is derived. Particle swarm optimization (PSO) algorithm has been adopted to find parameters of the controller. Simulations using a dynamic model of a six degrees of freedom (DOF) quadrotor aerial robot show the effectiveness of the approach in performing stabilization and position control even in the presence of external disturbances.


Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 256 ◽  
Author(s):  
Karam Kallu ◽  
Jie Wang ◽  
Saad Abbasi ◽  
Min Lee

This paper proposes a novel bilateral control design based on an estimated reaction force without a force sensor for a three-degree of freedom hydraulic servo system with master–slave manipulators. The proposed method is based upon sliding mode control with sliding perturbation observer (SMCSPO) using a bilateral control environment. The sliding perturbation observer (SPO) estimates the reaction force at the end effector and second link without using any sensors. The sliding mode control (SMC) is used as a bilateral controller for the robust position tracking and control of the slave device. A bilateral control strategy in a hydraulic servo system provides robust position and force tracking between master and slave. The difference between the reaction force of the slave produced by the effect of the remote environment and the operating force applied to the master by the operator is expressed in the target impedance model. The impedance model is applied to the master and allows the operator to feel the reaction force from the environment. This research experimentally verifies that the slave device can follow the trajectory of the master device using the proposed bilateral control strategy based on the estimated reaction force. This technique will be convenient for three or more degree of freedom (DOF) hydraulic servo systems used in dismantling nuclear power plants. It is worthy to mention that a camera is used for visual feedback on the safety of the environment and workspace.


Sign in / Sign up

Export Citation Format

Share Document