position tracking control
Recently Published Documents


TOTAL DOCUMENTS

204
(FIVE YEARS 55)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Huazi Cao ◽  
Lixin Wang

Abstract An end-effector position tracking control task for an aerial manipulator is usually constituted by two subtasks. The first is motion control, and the second is coordinate control so that the end-effector of the aerial manipulator can precisely track the given trajectory. This paper proposes a novel end-effector position tracking control approach for the aerial manipulator with a lightweight manipulator to achieve these two subtasks. The motion control of the aerial manipulator is solved by a partially coupled approach and divided into a multirotor controller and a manipulator controller. The multirotor controller is designed by the adaptive neural network control, while joints of the manipulator are steered by PID controllers. By resorting to radial basis function neural networks with adaptive weight estimation laws, the dynamic coupling between the multirotor and the manipulator can be compensated in real time. With the support of Lyapunov stability criteria, it is proved that the desired trajectories can be boundedly tracked by the multirotor under the proposed controller. Then, a new coordinate control method is proposed based on the linear model predictive control method. This method ensures that the solution satisfies physical limits of the aerial manipulator and can be executed in real time. Simulations demonstrate that the proposed motion controller significantly outperforms a baseline nonlinear motion controller in the simulation cases. Besides, comparisons among the proposed coordinate control method and traditional methods are simulated to demonstrate effectiveness and performance.


Author(s):  
Zhaowu Ping ◽  
Yang Song ◽  
Yaoyi Li ◽  
Yunzhi Huang ◽  
Jun-Guo Lu

It is well known that the position tracking control problem of permanent magnet synchronous motor (PMSM) is a challenging task when parameter uncertainties and time-varying load torque disturbances are taken into account. In this paper, a two-step controller design strategy composed of triple-loop control and internal model control is proposed to achieve a wide range of position tracking control of PMSM, where the reference position can be a relatively large value. In contrast, only local position tracking control problem has been solved by an internal model approach from output regulation theory in the recent work. In addition to the simulation results, the first experimental study is conducted to demonstrate the effectiveness of the proposed two-step control method. It is worth mentioning that our design can guarantee precise position tracking with a wide position range despite parameter uncertainties and time-varying load torque disturbances.


Sign in / Sign up

Export Citation Format

Share Document