exponential reaching law
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 30)

H-INDEX

11
(FIVE YEARS 1)

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shouwei Wei ◽  
Xiaoyu Su

To facilitate the performance of the active suspension system, the optimization of a new reaching law of the active suspension sliding mode controller based on cuckoo algorithm is addressed in this paper. Firstly, a linear model of the active suspension system is built. Then, according to the features of the new exponential reaching law, an active sliding mode control scheme based on the new sliding mode reaching law is designed. Finally, the simulation results are separated into two stages to verify the suitability and superiority of the proposed control scenario.


2021 ◽  
Vol 18 (1) ◽  
pp. 52-61
Author(s):  
Satish Kumar Gudey ◽  
Vinay Kumar Naguboina

In this paper a three phase Shunt Active Power Filter (ShAPF) is proposed to address the current related issues in a three phase Electrical Distribution System (EDS). A sliding mode controller (SMC) and an Enhanced Exponential Reaching Law based SMC (EERL-SMC) is proposed for a ShAPF to compensate the load current. The controller’s performance is tested by injecting the current harmonics into the system. A non-linear load along with different loads on the distribution side is connected in parallel in a distribution network at Point of common coupling (PCC). Modelling of the system is done using state space analysis. Stability of the system is analyzed using the state feedback approach. The reference source currents are generated using instantaneous PQ theory. For variations in the load, the THD in the source current is realized. It is found that EERL-SMC is more effective for a ShAPF in reducing the high frequency oscillations and settling time for convergence. The source voltage and current waveforms are observed to be sinusoidal in nature. Both the controllers are effective in reducing the THD levels in the source current as per the IEEE standards. A comparison between the controllers is presented in terms of settling time, THD in source current. PSCAD v4.6 is used for simulation works.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1776
Author(s):  
Changhong Jiang ◽  
Qiming Wang ◽  
Zonghao Li ◽  
Niaona Zhang ◽  
Haitao Ding

When a permanent magnet synchronous motor runs at low speed, the inverter will output discontinuous current and generate torque ripple; when the motor is runs at high speed, a large amount of stator harmonic current generates, which affects its speed following ability and torque stability. To ensure the fast and smooth switching of a permanent magnet synchronous motor in the full speed domain, this paper proposes the nonsingular terminal sliding mode control of PMSM speed control based on the improved exponential reaching law. Firstly, the improved exponential reaching law is composed of the state variables and power terms of the sliding mode surface functions. The reaching law function is designed in sections to balance the fast dynamic response of the system and chattering control. Secondly, an improved exponential reaching law based on the sliding mode control strategy of the PMSM speed loop is proposed. By designing the initial value of the integral term in the nonsingular terminal sliding mode surface function, the initial state of the system is located on the sliding mode surface. The integral sliding mode surface is used to reduce the system steady-state error, while the proposed sliding mode reaching law is used to increase the arrival speed and suppress system chattering, ultimately affecting modeling error problems, complex working conditions, and uncertainty factors. This paper proposes a sliding mode observer based on an improved exponential reaching law to compensate for the disturbances. Lyapunov stability theory can prove that this system can make the speed tracking error converge to zero in finite time. Hardware-in-the-loop experiments were used to validate the effectiveness of the proposed method.


Author(s):  
Parth Deshpande ◽  
KB Devika ◽  
Shankar C Subramanian ◽  
Lelitha Devi Vanajakshi

The process of modelling vehicle motion in a road traffic environment requires the integration of trajectory generation with vehicle control. The steps involved here are generating a feasible trajectory based on the existing traffic and tracking the trajectory to control it with a steering angle input. Since the parameters of a physical system vary with changes in operating conditions, it is important to consider robustness when designing controllers. This article aims at developing a trajectory-following model with robust steering control strategies to accurately follow a generated trajectory. In this study, performance-based proportional, robust proportional and sliding mode control strategies are designed for trajectory following. The robustness of the proportional controller is established using Kharitonov’s theorem, which is compared with a proportional controller tuned for performance. Sliding mode control is designed for robustness and chattering elimination using two kinds of reaching laws – a constant reaching law and a novel power rate exponential reaching law. The controllers are designed using a dynamic bicycle model considering the error with respect to the trajectory. The controllers are then evaluated in IPG CarMaker®. The resulting trajectories and control inputs are compared for the considered control methodologies using the ISO double lane change and the Slalom tests. Sliding mode control with power rate exponential reaching law is concluded to be more robust as compared to the other controllers, with lower response times, up to 84% lower heading angle deviations from the trajectory and an overshoot of only 3.2% in lane changing.


2021 ◽  
Author(s):  
Wei Liu ◽  
Li Zhang ◽  
Guoying Ning ◽  
Yi Cheng ◽  
Guowei Xu

Abstract An improved integral sliding mode observer (SMO) is proposed for the double closed-loop control system of Surface-Mounted Permanent Magnet Synchronous Motor(SPMSM) in this paper. By observing the stator current, the extended back Electromotive Force(back-EMF)of the motor is estimated, and the position and angle of the rotor are obtained by using the Phase-Locked Loop (PLL) structure. The improved integrated SMO control system not only ensures the system to converge to the equilibrium point in finite time, but also reduces the steady-state error. A new exponential reaching law is also designed in which the sgn (s) of the constant velocity term is replaced by the sigmoid (s). For improving the reaching speed, the gain adaptive function is added to the exponential term of the approaching law to make its coefficient change with the system state. Simulation results compared with the traditional SMO show that the control system based on the improved SMO can reduce observation error, enhance robustness, and suppress chattering phenomenon.


Sign in / Sign up

Export Citation Format

Share Document