Failure Analysis of a Welded Aluminum Alloy Component in High-Speed Train

2011 ◽  
Vol 337 ◽  
pp. 670-673
Author(s):  
Yong Hui Zhu ◽  
Wei Zhou ◽  
Yuan Nie ◽  
Zhong Yin Zhu ◽  
Hui Chen ◽  
...  

In this paper, a failure analysis is made to a welded aluminum alloy component of the equipment by module below the high-speed train. Making force analysis to the welded components by finite element, microscopic morphology observation and element distribution measurement of the fracture surface are done by the scanning electron microscopy and spectroscopy .It is determined that the main reason of fracture of welded components was that stress concentration exist in the working conditions, and the weld toe is the most severe stress concentration region. The stress concentration causes the fatigue microcrack, and under the action of repeated external force crack propagates and then crack. Lacking of penetration sites is under tensile residual stress, the crack propagation speed, and soon to instability and then broken.

2017 ◽  
Vol 73 ◽  
pp. 57-71 ◽  
Author(s):  
Weigang Hu ◽  
Zhiming Liu ◽  
Dekun Liu ◽  
Xue Hai

2011 ◽  
Vol 120 ◽  
pp. 51-55 ◽  
Author(s):  
Liang Yu ◽  
Yan Li Jiang ◽  
Sen Kai Lu ◽  
Hong Qiang Ru ◽  
Ming Fang

The shaft disc prepared with SiC 3D continuous ceramic frame reinforced aluminum alloy 7075 (3D-SiC/Al) composite of the CRH3 high speed train with a speed at 250 km/h was chosen as the research object, and the course of emergency brake was simulated by Cosmos. A three dimension model was established, the way of applying loads were discussed, and the temperature field and thermal stress field were obtained. The result shows that the highest temperature appears at about 57 s since braking and the value is about 373 °C. The biggest stress is about 237 MPa, appearing at about 51 s since braking, the regions distribute at the surface corresponding with the radiating ribs, and near the inner diameter. The hoop stress is larger than other directions. The result shows that the thermal stress duce to the transient temperature distribution model is released well for the distribution of the 3D continuous ceramic frame reinforced aluminum alloy 7075 structure compares with the conventional brake disc, which can satisfy the requirement of the shaft disc of the high speed train with a speed at 250 km/h applying emergency braking.


2012 ◽  
Vol 27 ◽  
pp. 914-922 ◽  
Author(s):  
Xuechong Ren ◽  
Lixin Zhang ◽  
Yingfeng Chen ◽  
Fengyan Sun ◽  
Weidong Zhang ◽  
...  

2011 ◽  
Vol 337 ◽  
pp. 460-465
Author(s):  
Lei Su ◽  
Yuan Nie ◽  
Hua Ji ◽  
Chuan Ping Ma ◽  
Shao Hua Yan ◽  
...  

The technology of lightening manufacture for aluminum alloy train body is one key of manufacturing high-speed train . The train body is a whole bearing loading tubular structure which is welded together by the large, hollow, thin-walled aluminum extrusion. Therefore,the demand for welding quality of aluminum alloy train body is very high,and the mechanical properties of joints severely affected the overall strength of welded components. To solve this problem ,we use the 421 EXPERT forceArc MIG of PHOENIX series of German EWM company to perform three types of experiments of single pulse, double pulse, and forceArc welding ,and then effect of three welding methods on mechanical properties of Welding joint for 5083 aluminum alloy used in high-speed train body is compared.


2008 ◽  
Vol 13-14 ◽  
pp. 247-250 ◽  
Author(s):  
C. Li ◽  
Chao Nan Xu ◽  
Yusuke Imai ◽  
Wen Xue Wang ◽  
Lin Zhang ◽  
...  

In this paper, we demonstrate that a dynamic stress concentration around Lüders band can be directly displayed using mechanoluminescence (ML) sensing film of SrAl2O4:Eu (SAO) coated on the surface of metal. Uniaxial tensile test of an aluminum alloy (2.5% Mg) plate coated with the SAO sensing film was performed and the ML images were recorded using a high-speed camera. Captured ML images confirmed the formation and propagation of Lüders band clearly in real time.


Sign in / Sign up

Export Citation Format

Share Document