uniaxial tensile test
Recently Published Documents


TOTAL DOCUMENTS

340
(FIVE YEARS 125)

H-INDEX

16
(FIVE YEARS 4)

2022 ◽  
Vol 58 (4) ◽  
pp. 271-282
Author(s):  
Nicolae Florin Cofaru ◽  
Adrian Pascu ◽  
Mihaela Oleksik ◽  
Radu Petruse

Obtaining parts made of composite materials through 3D Printing Additive manufacturing have fully proved their usefulness due to a number of advantages such as: the possibility to directly create complex shapes without going through the classic process of transforming the semi-finished products into finished parts through technologies which consume resources and energy and are totally unfriendly to the environment. The main disadvantage of the parts made by 3D Printing technologies is that they are less resistant from a mechanical point of view. This was solved with the emergence of the 3D printers capable of printing composite parts consisting of a plastic matrix reinforced with continuous fibers. This research focuses on studying 4 types of composite materials from the point of view of their mechanical properties: Onyx - a rigid nylon in which micro carbon fibers are inserted and Onyx reinforced with carbon, fiber glass or kevlar. Standardized specimens were made for the uniaxial tensile test and the experimental program was designed evaluating: the Elastic modulus [GPa], the Maximum Tensile stress [MPa], the Tensile strain at maximum Tensile stress [mm/mm]. The principal strains were also determined, by means of the digital image technique made using the Aramis system from GOM. The experimental tests confirm that these new materials will be serious candidates to be used in the engineering applications in various fields.


Author(s):  
R Pramod ◽  
N Siva Shanmugam ◽  
C K Krishnadasan ◽  
G Radhakrishnan ◽  
Manu Thomas

This work mainly focuses on designing a novel aluminum alloy 6061-T6 pressure vessel liner intended for use in launch vehicles. Fabrication of custom-made welding fixtures for the assembly of liner parts, namely two hemispherical domes and end boss, is illustrated. The parts of the liner are joined using the cold metal transfer welding process, and the welding trials are performed to arrive at an optimized parametric range. The metallurgical characterization of weld joint reveals the existence of dendritic structures (equiaxed and columnar). Microhardness of base and weld metal was 70 and 65 HV, respectively. The tensile strength of base and weld metal was 290 and 197 MPa, respectively, yielding a joint efficiency of 68%. Finite-element analysis of a uniaxial tensile test was performed to predict the tensile strength and location of the fracture in base and weld metal. The experimental and predicted tensile test results were found to be in good agreement.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7665
Author(s):  
Marcin Daniel Gajewski ◽  
Mikołaj Miecznikowski

The paper presents modeling of bridge elastomeric bearings using large deformation theory and hyperelastic constitutive relations. In this work, the simplest neo-Hookean model was compared with the Yeoh model. The parameters of the models were determined from the elastomer uniaxial tensile test and then verified with the results from experimental bearing compression tests. For verification, bearing compression tests were modeled and executed using the finite element method (FEM) in ABAQUS software. Additionally, the parameters of the constitutive models were determined using the inverse analysis method, for which the simulation results were as close as possible to those recorded during the experimental tests. The overall assessment of the suitability of elastomer bearings modeling with neo-Hookean and Yeoh hyperelasticity models is presented in detail.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6910
Author(s):  
Sasan Sattarpanah Karganroudi ◽  
Bahman Nasab ◽  
Davood Rahmatabadi ◽  
Mina Ahmadi ◽  
Mohammad Gholami ◽  
...  

In this study, Al1050 sheets were fabricated in five passes using the accumulative roll bonding (ARB) technique. For a more accurate and complete investigation, different tests were used, including a uniaxial tensile test. The results show that elongation increases about 50% for the annealed sample, which is 2.5 times that of the fifth pass (20%). A five-fold increase can be seen in tensile strength, which was 50 MPa in the annealed sample and reached 250 MPa at the end of the fifth pass. The annealed sample’s yield stress was 40 MPa, 4.5 times less than 180 MPa after five passes of ARB. Then, to evaluate sample hardness, the Vickers microhardness test was conducted in the samples’ depth direction, which recorded 39 HV for the annealed piece and 68 HV after the last ARB pass. These results show that the hardness increases by 1.8 times after five passes of ARB. In the next step, by conducting fractography tests after the sample fractures during the tensile test, the fracture’s mechanism and type were identified and explained. Finally, X-ray diffraction (XRD) was employed to produce pole figures of sample texture, and the anisotropy phenomena of the annealed sample and ARBed samples were wholly examined. In this study, with the help of pole figures, the anisotropic behavior after ARB was investigated and analyzed. In each step of the process, observing the samples’ texture states and the anisotropy magnificent was possible. According to the results, normal anisotropy of 0.6 in the annealed sample and 1.8 achieved after the fifth pass of ARB indicates that ARB leads to an increase in anisotropy.


Author(s):  
Amir Pagoli ◽  
Frederic Chapelle ◽  
Juan Antonio Corrales Ramón ◽  
Youcef Mezouar ◽  
Yuri Lapusta

Abstract Soft actuators can be classified into five categories: tendon-driven actuators, electroactive polymers (EAPs), shape-memory materials, soft fluidic actuators (SFAs), and hybrid actuators. The characteristics and potential challenges of each class are explained at the beginning of this review. Furthermore, recent advances especially focusing on soft fluidic actuators (SFAs) are illustrated. There are already some impressive SFA designs to be found in the literature, constituting a fundamental basis for design and inspiration. The goal of this review is to address the latest innovative designs for SFAs and their challenges and improvements with respect to previous generations, and help researchers to select appropriate materials for their application. We suggest six influential designs: pneumatic artificial muscles (PAM), PneuNet, continuum arm, universal granular gripper, origami soft structure, and vacuum-actuated muscle-inspired pneumatic (VAMPs). The hybrid design of SFAs for improved functionality and shape controllability is also considered. Modeling SFAs, based on previous research, can be classified into three main groups: analytical methods, numerical methods, and model-free methods. We demonstrate the latest advances and potential challenges in each category. Regarding the fact that the performance of soft actuators is dependent on material selection, we then focus on the behaviors and mechanical properties of the various types of silicone which can be found in the SFA literature. For a better comparison of the different constitutive models of silicone materials which have been proposed and tested in the literature, ABAQUS software is here employed to generate the engineering and true strain-stress data from the constitutive models, and compare them with standard uniaxial tensile test data based on ASTM412. Although the figures presented show that in a small range of stress-strain data, most of these models can predict the material model acceptably, few of them predict it accurately for large strain-stress values.


2021 ◽  
Author(s):  
Pradeep Lall ◽  
Mrinmoy Saha ◽  
Jeff Suhling ◽  
Ken Blecker

Abstract Electronic parts may be subjected to continuous activity at high temperatures as well as high strain-rate loads in the oil exploration industry, military, automotive, avionics, and space applications, and parts may be stored in non-climate-controlled enclosures prior to deployment. Material properties evolve at even moderate temperatures after a long period of storage, according to previous studies on undoped SAC alloys. To reduce the aging effects, a number of alloy formulations have been proposed. Data on the mechanical properties of lead-free solder alloys used for interconnection in electronic packaging at high strain rates and high storage temperatures is very important for design optimization of electronic package sustainability at extreme temperatures, since SAC soldiers have shown degradation of mechanical properties after prolonged exposure to storage temperature. The use of dopants in SAC solder has been proposed as a solution to minimize degradation. In this study, After keeping the samples in storage at 50°C for 1–8 months, a doped SAC solder called SAC-R (Ecolloy) was subjected to high strain rate testing. Uniaxial impact hammer tensile tests were conducted on samples with no aging and samples that had been aged for up to 8 months to assess the mechanical properties of SAC-R at high and low operating temperatures ranging from −65°C to 200°C and the Mechanical properties has been compared with an undoped solder SAC 105. The constants for the Anand Visco-Plasticity model were calculated using the material data for SAC-R. By comparing model predictions of the uniaxial tensile test with experimental results, the model’s ability to reflect material constitutive behavior has been quantified.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xuelong Hu ◽  
Ming Zhang ◽  
Xiangyang Zhang ◽  
Min Tu ◽  
Zhiqiang Yin ◽  
...  

Rock dynamic constitutive model plays an important role in understanding dynamic response and addressing rock dynamic problems. Based on elastoplastic mechanics and damage mechanics, a dynamic constitutive model of rock coupled with elastoplastic damage is established. In this model, unified strength theory is taken as the yield criterion; to reflect the different damage evolution law of rocks under tension and pressure conditions, the effective plastic strain and volumetric plastic strain are used to represent the compressive damage variable and the equivalent plastic strain is used to represent the tensile damage variable; the plastic hardening behavior and strain rate effect of rocks are characterized by piecewise function and dynamic increase factor function, respectively; Fortran language and LS-DYNA User-Defined Interface (Umat) are used to numerically implement the constitutive model; the constitutive model is verified by three classical examples of rock uniaxial and triaxial compression tests, rock uniaxial tensile test, and rock ballistic test. The results show that the constitutive model can describe the dynamic and static mechanical behavior of rock comprehensively.


Author(s):  
Junfeng HUANG ◽  
Erming HE ◽  
Pengxiang CHEN ◽  
Yongzhi LI

The uniaxial tensile test, linear expansion coefficient test of a modified epoxy resin in the ambient temperature range from -35℃ to 120℃, and the impact test at room temperature were carried out to explore its mechanical and thermal characteristics under temperature change environment. The constitutive model of the material suitable for temperature change environment is deduced, the numerical calculation is carried out in MATLAB, compared with the relative tested curve, and the obtained constitutive model is applied to the modeling calculation in ABAQUS and the results are verified. The results show that the modified epoxy resin has better strength, stiffness, impact toughness and lower coefficient of linear expansion than common epoxy resins such as E-44, E-51 and EPON e863. The material is suitable to be used as the matrix of spaceborne electronic component potting module. The proposed empirical constitutive model can obtain the stress-strain relationship of the material at any temperature in the range of -35℃~120℃ through interpolation, and can be directly used in relevant damage analysis and life prediction of electronic component potting module. The research method and derivation results have engineering reference value.


2021 ◽  
Author(s):  
SHAILEE UPADHYAY ◽  
FRANCISCO MESQUITA ◽  
BABAK FAZLALI ◽  
LARISSA GORBATIKH ◽  
YENTL SWOLFS

A uniaxial tensile test is a useful method for determination of material properties, especially longitudinal tensile strength. To accurately derive the longitudinal tensile strength, it is desired that the specimen fails in in the gauge section defined here as ‘working zone’. Unidirectional (UD) composites require use of end tabs during this tensile testing to avoid damage to the specimen due to grip serrations. The grip pressure, along with sudden geometry change at the edge of end tabs leads to longitudinal stress concentrations. The conventionally used rectangular and tapered end tabs suffer from these longitudinal stress concentrations under the edge of end tabs, causing premature failure of specimen outside of the working zone. In the present paper, a simulation study is performed for comparison of conventional end tabs with hybrid specimen geometry [1] and a novel arrow-shaped end tab geometry to determine the effect of end tab geometry on longitudinal stress concentrations. The study is focused on high modulus carbon fibre HS40/epoxy UD (0°) composite. The numerical model replicates the actual set-up for uniaxial tensile testing, including contact interactions between testing machine components. The simulation results are used to further optimise the geometry and provide recommendations to eliminate or minimise longitudinal stress concentrations.


Sign in / Sign up

Export Citation Format

Share Document