The Influence of Size Effect on High-Volume Fly-Ash Concrete’s Carbonation Resistance Performance

2011 ◽  
Vol 368-373 ◽  
pp. 1121-1124
Author(s):  
Li Fang Liu ◽  
Xiao Xia Niu ◽  
Wang Yu ◽  
Xiao Man Liu

using fixed concrete slump method,the carbonation resistance of concretes with high-volume fly-ash and ground granulated blast-furnace slag had been studied, and make an approach to size- effect .The results show that the more fly-ash joined in,the more carbonation depth is deeper . The carbonation resistance of concretes with high-volume fly-ash and ggbs is better than only with high-volume fly-ash’s. Size effect on carbonation depth of concretes is also important . Carbonation depth will become deeper as soon as the block size improving .and the early improvement is bigger than the late .The more concretes with high-volume fly-ash and ground granulated blast-furnace slag,the size-effect on carbonation depth of concretes will be more evident.

2011 ◽  
Vol 477 ◽  
pp. 366-374
Author(s):  
Jian Hua Wu ◽  
Yun Lan Liu

This paper studies the influence of different mineral admixtures(fly ash and ground granulated blast furnace slag)on the carbonation resistance and chloride permeability of steam-cured HPC. The test results show that under the condition of steam-cured and standard-cured, incorporating 20-30% of the ground granulated blast furnace slag or 15-20% of fly ash decreased the alkalinity and the carbonation resistance of the concrete; with the increase of the proportion of the mineral admixture in concrete, carbonation resistance of HPC was decreased; incorporating 20-30% of the ground granulated blast furnace slag or 15-20% of fly ash improved the chloride permeability of steam-cured concrete, and the influence of ground granulated blast furnace slag is better than that of the fly ash.


Author(s):  
Mohammed K. H. Radwan ◽  
Chiu Chuen Onn ◽  
Kim Hung Mo ◽  
Soon Poh Yap ◽  
Ren Jie Chin ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 596
Author(s):  
Yasuhiro Dosho

To improve the application of low-quality aggregates in structural concrete, this study investigated the effect of multi-purpose mineral admixtures, such as fly ash and ground granulated blast-furnace slag, on the performance of concrete. Accordingly, the primary performance of low-quality recycled aggregate concrete could be improved by varying the replacement ratio of the recycled aggregate and using appropriate mineral admixtures such as fly ash and ground granulated blast-furnace slag. The results show the potential for the use of low-quality aggregate in structural concrete.


Sign in / Sign up

Export Citation Format

Share Document