scholarly journals Effect of Mineral Admixtures on the Performance of Low-Quality Recycled Aggregate Concrete

Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 596
Author(s):  
Yasuhiro Dosho

To improve the application of low-quality aggregates in structural concrete, this study investigated the effect of multi-purpose mineral admixtures, such as fly ash and ground granulated blast-furnace slag, on the performance of concrete. Accordingly, the primary performance of low-quality recycled aggregate concrete could be improved by varying the replacement ratio of the recycled aggregate and using appropriate mineral admixtures such as fly ash and ground granulated blast-furnace slag. The results show the potential for the use of low-quality aggregate in structural concrete.

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 843
Author(s):  
Yuji Miyazaki ◽  
Takeshi Watanabe ◽  
Yuji Yamada ◽  
Chikanori Hashimoto

Since high quality natural aggregates are becoming scarce, it is important that industrial recycled products and by-products are used as aggregates for concrete. In Japan, the use of recycled aggregate (RG) is encouraged. Since, strength and durability of recycled aggregate concrete is lower than that of normal aggregate concrete, the use of recycled aggregate has not been significant. In order to improve physical properties of concrete using recycled coarse aggregate, blast furnace slag sand has been proposed. Recently, blast furnace slag sand is expected to improve durability, freezing, and thawing damage of concrete in Japan. Properties of fresh and hardened concrete bleeding, compressive strength, and resistance to freezing and thawing which are caused by the rapid freezing and thawing test using liquid nitrogen is a high loader than the JIS A 1148 A method that were investigated. As a result, concrete using treated low-class recycled coarse aggregate and 50% or 30% replacement of crushed sand with blast furnace slag sand showed the best results, in terms of bleeding, resistance to freezing and thawing.


2011 ◽  
Vol 477 ◽  
pp. 366-374
Author(s):  
Jian Hua Wu ◽  
Yun Lan Liu

This paper studies the influence of different mineral admixtures(fly ash and ground granulated blast furnace slag)on the carbonation resistance and chloride permeability of steam-cured HPC. The test results show that under the condition of steam-cured and standard-cured, incorporating 20-30% of the ground granulated blast furnace slag or 15-20% of fly ash decreased the alkalinity and the carbonation resistance of the concrete; with the increase of the proportion of the mineral admixture in concrete, carbonation resistance of HPC was decreased; incorporating 20-30% of the ground granulated blast furnace slag or 15-20% of fly ash improved the chloride permeability of steam-cured concrete, and the influence of ground granulated blast furnace slag is better than that of the fly ash.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Rui Zhao ◽  
Zuquan Jin ◽  
Guangyan Feng ◽  
Jianqiang Li

This paper investigates the influence of mineral admixtures fly ash (FA) and ground-granulated blast-furnace slag (GGBS), the byproducts of industry, on chloride ions migration and corrosion resistance performance. A novel preparation method of wire beam electrode (WEB) was also introduced to explore the excellent corrosion-resistant capacity of concrete with mineral admixtures. By comparing concrete specimens with and without FA and GGBS, the test result of wire beam electrode, rapid chloride migration (RCM), and electrochemical tests highlight the positive impact of fly ash and GGBS against chloride ions migration, respectively. Concrete with fly ash and GGBS supplies an advanced protection effect of ordinary Portland cement; meanwhile, CO2 emission amount can be significantly reduced. Moreover, homemade wire beam electrode was proved to be a novel and reliable test method against corrosion, which has agreement with the test result of an electrochemical device.


2016 ◽  
Vol 249 ◽  
pp. 3-7 ◽  
Author(s):  
Vlastimil Bílek ◽  
Jan Hurta ◽  
Petra Done ◽  
Libor Zidek ◽  
Tomas Zajdlik

Hybrid cements represent a relatively new type of binders which combine some of the advantages of Ordinary Portland Cement (OPC), the application of mineral admixtures and alkali activation. Hybrid cements represent blends containing a low portion of OPC and a high proportion of mineral additions (such as blast furnace slag, fly ash, metakaolin ....). The paper is focused on the study of properties of mortars prepared from hybrid cements. Mortars with hybrid cements were prepared for an evaluation of the effects of the dosage and the composition of alkali activator, the dosage of OPC and the ratio between ground granulated blast furnace slag and fly ash. The results make it possible to optimize the composition of hybrid alkali activated concretes.


Sign in / Sign up

Export Citation Format

Share Document