mgo concrete
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 8)

H-INDEX

6
(FIVE YEARS 2)

Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3157
Author(s):  
Zhifang Zhao ◽  
Huanmi Zhang ◽  
Bo Fang ◽  
Yukun Sun ◽  
Yangfeng Zhong ◽  
...  

Tensile creep is an important factor affecting the early cracking resistance of concrete. The tensile creep model can effectively predict the development of tensile creep. In order to establish an appropriate tensile creep model, a temperature–stress testing machine (TSTM) was employed to test the development of temperature, deformation and restraint stress of benchmark concrete and concrete mixed with the MgO under different temperature curing modes. The development law of early age stress, strain and creep was analyzed via the test data of the TSTM. The early age tensile creep of concrete was predicted with the existing Kelvin creep model. The effect of variable temperature on creep was considered in this study, and an improved Kelvin creep model was proposed. The prediction accuracy of the two models was compared and analyzed. The results indicate that MgO has little influence on the creep and specific creep of concrete. The early age cracking resistance of MgO concrete is better than benchmark concrete. The improved Kelvin model based on the microprestress-solidification (MPS) theory predicts the early tensile creep of concrete more accurately in variable temperature conditions. These are significantly helpful for the application of the MgO expansion agent in dam engineering.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3074
Author(s):  
Feifei Jiang ◽  
Min Deng ◽  
Liwu Mo ◽  
Wenqing Wu

To prevent cracks caused by shrinkage of the deck of the Xiaoqing River Bridge, MgO concrete (MC) and steel fiber reinforced MgO concrete (SMC) were used. The deformation and strength of the deck were measured in the field, the resistance to chloride penetration of the concrete was measured in the laboratory, and the pore structure of the concrete was analyzed by a mercury intrusion porosimeter (MIP). The results showed that the expansion caused by the hydration of MgO could suppress the shrinkage of the bridge deck, and the deformation of the deck changed from −88.3 × 10−6 to 24.9 × 10−6, effectively preventing shrinkage cracks. At the same time, due to the restriction of the expansion of MgO by the steel bars, the expansion of the bridge deck in the later stage gradually stabilized, and no harmful expansion was produced. When steel fiber and MgO were used at the same time, the three-dimensional distribution of steel fiber further limited the expansion of MgO. The hydration expansion of MgO in confined space reduced the porosity of concrete, optimized the pore structure, and improved the strength and durability of concrete. The research on the performance of concrete in the in-situ test section showed that MgO and steel fiber were safe for the bridge deck, which not only solved the problem of shrinkage cracking of the bridge deck but also further improved the mechanical properties of the bridge deck.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 338 ◽  
Author(s):  
Feifei Jiang ◽  
Min Deng ◽  
Liwu Mo ◽  
Wenqing Wu

To improve the chloride diffusion resistance and durability of concrete, a new kind of steel fiber reinforced MgO concrete (SFRMC) was made by adding steel fiber and MgO to concrete simultaneously. With steel fiber for load bearing and expansion limiting, MgO as the expander, SFRMC has both the advantages of fiber reinforced concrete and expansion concrete. The influence of steel fiber and MgO on the strength and chloride diffusion resistance of concrete was evaluated by splitting tensile test and chloride diffusion test. Mercury intrusion porosimeter (MIP) and scanning electron microscopy (SEM) were used to study the microstructure of SFRMC. The results showed that the combined action of steel fiber and MgO reduced the porosity of concrete and the chloride diffusion coefficient (CDC), which could not be achieved by steel fiber and MgO separately. In the free state, the expansion energy produced by the hydration of MgO made the concrete expand outwards. However, under the constraint of steel fiber, the expansion energy was used to tension the fiber, resulting in self-stress. In this way, compared to reference concrete RC, the tensile strength of SFRMC-1, SFRMC-2, and SFRMC-3 increased by 3.1%, 61.3%, and 64.5%, CDC decreased by 8.8%, 36.7%, and 33.1%, and the porosity decreased by 6.2%, 18.4%, and 20.6%, respectively. In addition, the SEM observations demonstrated that the interfacial transition zone (ITZ) between fiber and matrix was denser in SFRMC, which contributed to reduce the diffusion of chloride ions in the concrete.


2020 ◽  
Author(s):  
Jennifer Arendt ◽  
Wolfram Kudla ◽  
Thomas Wilsnack ◽  
Till Popp ◽  
Daniela Freyer

<p>For underground storage facilities and future HAW repositories, a secure closure is indispensable. Within the scope of two consecutive research projects, three closure elements were installed in large-scale tests at the Teutschenthal mine in the Carnallitit Mountains between 2006 and 2008. Special mention should be made here of the large-scale test 2 (“GV2”), which was produced from MgO concrete with the 5-1-8 binder phase. This structure was made using the dry-mix shotcrete procedure. The low temperature development during the setting of the shotcrete was very advantageous. The 10.25 m long structure, with a height and width of 3.55 m each, consists of 104 concreting sections with an average layer thickness of 9.9 cm. It was of interest whether the concreting section boundaries (“BAG”) influence the permeability (negatively). The structure is equipped with pressure transmitters and TDR sensors in three measuring levels. After completion of the structure and injections in the contact area, the integral system permeability was 2*10<sup>‑16</sup> m². Liquid pressurization via pressure chamber was carried out on the test structure after a maturing period of about 10 years. After 8 years, the permeability with gas and with solution was determined in boreholes and on drill cores, especially with regard to the development over time. The determined in-situ gas permeability is on average 2.7*10<sup>‑19</sup> m², on compact concrete (without BAGs) on average 2.0*10<sup>-20</sup> m². Test areas containing BAGs showed a higher permeability of maximum three orders of magnitude in some measurements. The solution permeability was determined both with a saturated NaCl solution and with a NaCl-saturated solution containing MgCl<sub>2</sub> and is between 1.0*10<sup>‑20</sup> m² and 9.0*10<sup>‑20</sup> m², whereby this decreases by half a power of ten over the measurement period of 600 days. In further integral injection tests in 4.5 m and 4.8 m long boreholes, a significant decrease in permeability over time was also observed. From an initial 2*10<sup>‑15</sup> m² and 4*10<sup>‑16</sup> m², respectively, the integral permeability decreased to <10<sup>‑19</sup> m² over a measuring period of 2.5 years. The reason for this decrease is the reduction of pore space due to the recrystallization of MgO and the transformation of the metastable 5-1-8 phase to the long-term stable 3-1-8 phase due to the increase in volume that takes place when the solution is added. Potential weak points or defects at the technically determined concrete section boundaries, therefore, do not represent weak zones in the structure in the long term due to this self-healing effect.</p><p>This paper reports on the large-scale experiment GV2 made of MgO concrete with 5-1-8 phase and the comprehensive permeability and strength investigations in drillings and on drill cores. The test results are the precondition for a modeling of the long-term behaviour of MgO-concrete.</p>


2020 ◽  
Author(s):  
Jan Aurich ◽  
Daniela Freyer ◽  
Matthias Gruner ◽  
Wolfram Kudla

<p>These abstract bases on the R & D project ELSA Phase II - Concept development for shaft seals and testing of sealing elements for HAW repositories, funded by the German Federal Ministry of Energy and Economic Affairs.</p><p>The installation of sealing elements in salt rock requires a mechanical support system, which is chemical compatible with the host rock. In future HAW-repositories abutments and sealing elements within the shafts and drifts could be made of magnesia building material with the long term stable 3-1-8 binder phase, if solution containing magnesium can attack the seal.</p><p>In 2014 a first large-scale experiment was performed in the Sondershausen salt mine in Germany. A vertical borehole with the depth of two meters and a diameter of 1.1 meter was filled with the magnesia-based concrete. Several sensors measured the development of temperature, comprehensive stress and expansion within the test construction for approximately one year. During the binding reaction the temperature increased by 55 K in the center. After 150 days, the expansion in axial direction reached 2.4 mm/m and 1.1 mm/m in radial direction.</p><p>In 2018 a second large-scale-experiment was performed in the Teutschenthal salt mine, Germany to continue the investigations. A new vertical borehole with the depth of 3.5 meters and a diameter of 1.3 meters was filled with the same material. The temperature in the center increased by 40 K during the binding reaction and decreased down to the ambient temperature after 20 days. In result of the first experiences, the stress sensor range was increased. After one year a comprehensive stress of 6.2 MPa was measured at the contour and is still evolving at this point (early 2020). The maximum axial expansion reached 7.9 mm/m and stays at this level. The maximum radial expansion reached 0.7 mm/m 20 days after concreting and decreased subsequently. This material behavior corresponds to the high comprehensive stress level.</p><p>The second experiment is equipped with a pressure chamber at the bottom. A first determination of the integral gas permeability revealed a value of approx. 3E<sup>-18 </sup>m² to 3E<sup>-17 </sup>m². In the near term a multistage pressurization of the construction is planned, using a saturated NaCl solution to evaluate the sealing ability.</p><p>This contribution reports on the measured parameters (temperature, stress, strain) of the two large-scale tests with long-term stable MgO-concrete and the composition requirements to obtain a long-term stable MgO concrete. Long-term stable MgO concrete with 3-1-8 phase has been used for the first time in these tests. The measured test-results are the foundation for modelling the behaviour of the MgO-concrete.</p>


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3617 ◽  
Author(s):  
Feifei Jiang ◽  
Zhongyang Mao ◽  
Min Deng ◽  
Dawang Li

To reduce the cracking caused by shrinkage and avoid the brittle behavior of concrete, MgO expansion agent and steel fibers were used in this paper. Firstly, the effect of MgO and steel fibers on the compressive strength of concrete was compared. The results showed that the compressive strength of steel fibers reinforced concrete (SC) and steel fiber reinforced MgO concrete (SMC) was significantly improved. Compared with ordinary concrete (OC), SMC’s 28 days compressive strength increased by 19.8%. Secondly, the influence of MgO and steel fibers with different contents on the self-volumetric deformation of concrete was compared through the experiment. The results showed that as a result of the hydration expansion of MgO, MC and SMC both showed obvious expansion, and their 190 days expansion was 335 μ ε and 288 μ ε , respectively. Lastly, through a scanning electron microscope (SEM) test, it was found that the constraint effect of steel fibers changed the expansion mode of MgO from outward expansion to inward extrusion, thus improving the interfacial bond strength of concrete.


Sign in / Sign up

Export Citation Format

Share Document