Numerical Simulation of Shock Diffraction on Cartesian Grid

2011 ◽  
Vol 378-379 ◽  
pp. 11-14
Author(s):  
Hong Chen ◽  
Wei Bing Zhu ◽  
Run Peng Sun ◽  
Bin Zhang

Shock diffraction over geometric obstacles is performed on two-dimensional cartesian grid using the TVD WAF method in conjunction with the HLLC approximate Riemann solver and dimensional splitting. Present cartesian grid results for popular and challenging two-dimensional shock diffraction problems are presented and compared to experimental photographs. Benchmark and example test cases were chosen to cover a wide variety of Mach numbers for weak and strong shock waves, and for square and circular geometries. The results show that the comparisons between experimental and simulated images are consistent.

1997 ◽  
Vol 45 (523) ◽  
pp. 453-457
Author(s):  
Toshihiro MORIOKA ◽  
Yoshiki MATSUURA ◽  
Nariaki SAKURAI ◽  
Jorge KOREEDA ◽  
Kazuo MAENO ◽  
...  

1990 ◽  
Author(s):  
H. Iizuka ◽  
H. Honma ◽  
A. Tsukamoto ◽  
T. Ohno

2010 ◽  
Vol 6 (S274) ◽  
pp. 441-444
Author(s):  
Rony Keppens ◽  
Peter Delmont ◽  
Zakaria Meliani

AbstractThe interaction of (strong) shock waves with localized density changes is of particular relevance to laboratory as well as astrophysical research. Shock tubes have been intensively studied in the lab for decades and much has been learned about shocks impinging on sudden density contrasts. In astrophysics, modern observations vividly demonstrate how (even relativistic) winds or jets show complex refraction patterns as they encounter denser interstellar material.In this contribution, we highlight recent insights into shock refraction patterns, starting from classical up to relativistic hydro and extended to magnetohydrodynamic scenarios. Combining analytical predictions for shock refraction patterns exploiting Riemann solver methodologies, we confront numerical, analytical and (historic) laboratory insights. Using parallel, grid-adaptive simulations, we demonstrate the fate of Richtmyer-Meshkov instabilities when going from gaseous to magnetized plasma scenarios. The simulations invoke idealized configurations closely resembling lab analogues, while extending them to relativistic flow regimes.


1996 ◽  
Vol 175 ◽  
pp. 435-436 ◽  
Author(s):  
J.A. Font ◽  
J.M. Marti ◽  
J.M. Ibáñez ◽  
E. Müller

Numerical simulations of supersonic jets are able to explain the structures observed in many VLA images of radio sources. The improvements achieved in classical simulations (see Hardee, these proceedings) are in contrast with the almost complete lack of relativistic simulations the reason being that numerical difficulties arise from the highly relativistic flows typical of extragalactic jets. For our study, we have developed a two-dimensional code which is based on (i) an explicit conservative differencing of the special relativistic hydrodynamics (SRH) equations and (ii) the use of an approximate Riemann solver (see Martí et al. 1995a,b and references therein).


2020 ◽  
Vol 496 (2) ◽  
pp. 2493-2505
Author(s):  
Jamie F Townsend ◽  
László Könözsy ◽  
Karl W Jenkins

ABSTRACT This work presents the development of a rotated-hybrid Riemann solver for solving relativistic hydrodynamics (RHD) problems with the hybridization of the HLL and HLLC (or Rusanov and HLLC) approximate Riemann solvers. A standalone application of the HLLC Riemann solver can produce spurious numerical artefacts when it is employed in conjunction with Godunov-type high-order methods in the presence of discontinuities. It has been found that a rotated-hybrid Riemann solver with the proposed HLL/HLLC (Rusanov/HLLC) scheme could overcome the difficulty of the spurious numerical artefacts and presents a robust solution for the Carbuncle problem. The proposed rotated-hybrid Riemann solver provides sufficient numerical dissipation to capture the behaviour of strong shock waves for RHD. Therefore, in this work, we focus on two benchmark test cases (odd–even decoupling and double-Mach reflection problems) and investigate two astrophysical phenomena, the relativistic Richtmyer–Meshkov instability and the propagation of a relativistic jet. In all presented test cases, the Carbuncle problem is shown to be eliminated by employing the proposed rotated-hybrid Riemann solver. This strategy is problem-independent, straightforward to implement and provides a consistent robust numerical solution when combined with Godunov-type high-order schemes for RHD.


2003 ◽  
Vol 478 ◽  
pp. 237-256 ◽  
Author(s):  
M. SUN ◽  
K. TAKAYAMA

The production of vorticity or circulation production in shock wave diffraction over sharp convex corners has been numerically simulated and quantified. The corner angle is varied from 5° to 180°. Total vorticity is represented by the circulation, which is evaluated by integrating the velocity along a path enclosing the perturbed region behind a diffracting shock wave. The increase of circulation in unit time, or the rate of circulation production, depends on the shock strength and wall angle if the effects of viscosity and heat conductivity are neglected. The rate of vorticity production is determined by using a solution-adaptive code, which solves the Euler equations. It is shown that the rate of vorticity production is independent of the computational mesh and numerical scheme by comparing solutions from two different codes. It is found that larger wall angles always enhance the vorticity production. The vorticity production increases sharply when the corner angle is varied from 15° to 45°. However, for corner angles over 90°, the rate of vorticity production hardly increases and reaches to a constant value. Strong shock waves produce vorticity faster in general, except when the slipstream originating from the shallow corner attaches to the downstream wall. It is found that the vorticity produced by the slipstream represents a large proportion of the total vorticity. The slipstream is therefore a more important source of vorticity than baroclinic effects in shock diffraction.


Sign in / Sign up

Export Citation Format

Share Document