astrophysical research
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 4)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 26 (2) ◽  
pp. 130-147
Author(s):  
O. M. Ulyanov ◽  

Purpose: The main most pronounced events, which occurred in the initial period of the pulsars’ study at the decameter wavelength range, are presented. The example of the main scientific problems, which were formulated at the very beginning of pulsar research, shows how the emphasis and priorities of these studies have been changing over time, which tasks have finally been solved, and which are still waiting to be solved. It is shown how the ongoing modernization of the UTR-2 radio telescope have allowed to acquire new qualities in astrophysical research being made with this radio telescope and to identify new scientific directions. The example of the cited references shows how the pulsar research efforts in Ukraine have been developed and how they were integrated into the world astrophysical research of these unique objects. The purpose of this work is to show the relationship between the past and the present on the example of pulsars for longer than a semi-centennial period and to show how the scientific problems that were formulated in the past, and which could not be solved under the then-existing technical conditions, were solved by the subsequent generations of researchers. Design/methodology/approach: The methods of comparison and historical parallels show how the low-frequency studies of pulsars have been developed and evolved almost from their discovery until now. Findings: It is shown how quantitative transformations and technical development, as well as non-standard scientific approaches, unhackneyed thought and international cooperation allow to solve complex radio astronomical problems related to the low-frequency studies of pulsars. Conclusions: The paper provides a historical overview of more than half a century-long radio astronomical studies of pulsars, having been and still being made at the decameter band using the UTR-2 radio telescope. The “old” and current priorities in pulsar research are given, and it is shown how qualitatively the technical parameters of back end facility and computer performance have been changed in studying the coherent pulsar radio emission nature. Key words: aberration; frequency band; pulse; interpulse; dispersion measure; rotation measure; plasma; pulsar; radio telescope



Author(s):  
Frederik Boe Hüttel ◽  
Line Katrine Harder Clemmensen

Consistent and accurate estimation of stellar parameters is of great importance for information retrieval in astrophysical research. The parameters span a wide range from effective temperature to rotational velocity. We propose to estimate the stellar parameters directly from spectral signals coming from the HARPS-N spectrograph pipeline before any spectrum-processing steps are applied to extract the 1D spectrum. We propose an attention-based model to estimate the stellar parameters, which estimate both mean and uncertainty of the stellar parameters through estimation of the parameters of a Gaussian distribution. The estimated distributions create a basis to generate data-driven Gaussian confidence intervals for the estimated stellar parameters. We show that residual networks and attention-based models can estimate the stellar parameters with high accuracy for low Signal-to-noise ratio (SNR) compared to previous methods. With an observation of the Sun from the HARPS-N spectrograph, we show that the models can estimate stellar parameters from real observational data.



Solar Physics ◽  
2021 ◽  
Vol 296 (3) ◽  
Author(s):  
Nadiia M. Kostogryz ◽  
Friedrich Kupka ◽  
Nikolai Piskunov ◽  
Damian Fabbian ◽  
Daniel Krüger ◽  
...  

AbstractWe aim to improve the accuracy of radiative energy transport in three-dimensional radiation hydrodynamical simulations in ANTARES (A Numerical Tool for Astrophysical RESearch). We implement in the ANTARES short-characteristics numerical schemes a modification of the Bézier interpolant solver. This method yields a smoother surface structure in simulations of solar convection and reduces the artifacts appearing due to the limited number of rays along which the integration is done. Reducing such artifacts leads to increased stability of the code. We show that our new implementation achieves a better agreement of the temperature structure and its gradient with a semi-empirical model derived from observations, as well as of synthetic spectral-line profiles with the observed solar spectrum.



Author(s):  
Charli M Sakari ◽  
Matthew D Shetrone ◽  
Andrew McWilliam ◽  
George Wallerstein

Abstract G1, also known as Mayall II, is one of the most massive star clusters in M31. Its mass, ellipticity, and location in the outer halo make it a compelling candidate for a former nuclear star cluster. This paper presents an integrated light abundance analysis of G1, based on a moderately high-resolution (R = 15, 000) spectrum obtained with the High Resolution Spectrograph on the Hobby-Eberly Telescope in 2007 and 2008. To independently determine the metallicity, a moderate resolution (R ∼ 4, 000) spectrum of the calcium-II triplet lines in the near-infrared was also obtained with the Astrophysical Research Consortium’s 3.5-m telescope at Apache Point Observatory. From the high-resolution spectrum, G1 is found to be a moderately metal-poor cluster, with $[\rm {Fe/H}]~=~-0.98\pm 0.05$. G1 also shows signs of α-enhancement (based on Mg, Ca, and Ti) and lacks the s-process enhancements seen in dwarf galaxies (based on comparisons of Y, Ba, and Eu), indicating that it originated in a fairly massive galaxy. Intriguingly, G1 also exhibits signs of Na and Al enhancement, a unique signature of GCs—this suggests that G1’s formation is intimately connected with GC formation. G1’s high [Na/Fe] also extends previous trends with cluster velocity dispersion to an even higher mass regime, implying that higher mass clusters are more able to retain Na-enhanced ejecta. The effects of intracluster abundance spreads are discussed in a subsequent paper. Ultimately, G1’s chemical properties are found to resemble other M31 GCs, though it also shares some similarities with extragalactic nuclear star clusters.



2020 ◽  
Vol 497 (1) ◽  
pp. L24-L29
Author(s):  
Alejandra D Romero ◽  
L Antunes Amaral ◽  
S O Kepler ◽  
L Fraga ◽  
D Kurtz ◽  
...  

ABSTRACT We report the detection of periodic variations on the $T_\mathrm{eff}\simeq 32\, 000$ K DA white dwarf star HE 1017−1352. We obtained time series photometry using the 4.1-m Southern Astrophysical Research telescope on three separate nights for a total of 16.8 h. From the frequency analysis, we found four periods of 605, 556, 508, and 869 s with significant amplitudes above the 1/1000 false alarm probability detection limit. The detected modes are compatible with low harmonic degree g-mode non-radial pulsations with radial order higher than ∼9. This detection confirms the pulsation nature of HE 1017−1352 and thus the existence of the new pulsating class of hot DA white dwarf stars. In addition, we detect a long period of 1.52 h, compatible with a rotation period of DA white dwarf stars.



2020 ◽  
pp. 8-11
Author(s):  
G.P. Kovtun


2020 ◽  
Vol 51 (1) ◽  
pp. 20-22
Author(s):  
Barbara Ercolano

Thousands of exoplanets have been discovered and the search for life outside Earth is at the forefront of astrophysical research. The planets we observe show a mind-blowing diversity that current theories strive to explain as part of the quest to assess the chances of finding life outside the Earth.



2019 ◽  
Vol 15 (S356) ◽  
pp. 383-384
Author(s):  
Seman Abaraya ◽  
Tolu Biressa

AbstractCompact objects are of great interest in astrophysical research. There are active research interests in understanding better various aspects of formation and evolution of these objects. In this paper we addressed some problems related to the compact objects mass limit. We employed Einstein field equations (EFEs) to derive the equation of state (EoS). With the assumption of high densities and low temperature of compact sources, the derived equation of state is reduced to polytropic kind. Studying the polytropic equations we obtained similar physical implications, in agreement to previous works. Using the latest version of Mathematica-11 in our numerical analysis, we also obtained similar results except slight differences in accuracy.



Sign in / Sign up

Export Citation Format

Share Document