An Innovative Drive Train Design for Improved Dead Reckoning Accuracy in Automated Guided Vehicles

2011 ◽  
Vol 383-390 ◽  
pp. 5375-5380
Author(s):  
Murelitharan Muniandy ◽  
Kanesan Muthusamy

The automated guided vehicle (AGV) is a key component for the successful implementation of flexible manufacturing systems (FMS). AGVs are wheeled mobile robots (WMR) employed for material handling in the constantly evolving layouts of these modern factory shop floors. As such their ability to navigate autonomously is an equally important aspect to sustain an efficient manufacturing process. However, their mobility efficiency is inherently affected by the unproductive systematic and non-systematic odometry errors. Odometry errors mainly occur due to the mobility configuration of the AGV drive train and the surface characteristics the robot is interacting with. Odometry error accumulates over the distance traveled and leads to severe dead reckoning inaccuracy if the robot’s feedback control mechanism is unable to correct the error fast. This paper proposes an innovative drive train mechanism called dual planetary drive (DPD) that will minimize odometry errors without the need for complex electronic feedback control systems

Author(s):  
Carlos Llopis-Albert ◽  
Francisco Rubio ◽  
Francisco Valero

<p class="Textoindependiente21">The designing of an efficient warehouse management system is a key factor to improve productivity and reduce costs. The use of Automated Guided Vehicles (AVGs) in Material Handling Systems (MHS) and Flexible Manufacturing Systems (FMS) can help to that purpose. This paper is intended to provide insight regarding the technical and financial suitability of the implementation of a fleet of AGVs. This is carried out by means of a fuzzy set/qualitative comparative analysis (fsQCA) by measuring the level of satisfaction of managerial decision makers.</p>


Author(s):  
Zude Zhou ◽  
Huaiqing Wang ◽  
Ping Lou

Group technology (GT) is a management philosophy that attempts to group products with similar design and/or manufacturing characteristics. It is also a key factor in the successful implementation of flexible manufacturing systems, and equally is one of the foundations of the implementation of intelligent manufacturing. The success of GT implementation is in the effective formation of part families and the rational layout of the manufacturing cell (machine family). In this chapter, the background and conception of (GT) are introduced, followed by succinct descriptions of the similarity criterion, classification and coding systems, and classification approaches of GT. The actual applications of GT to product design, process planning and group scheduling are discussed, and finally the summary and trends of GT are articulated.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zhixiong Li ◽  
Morteza Jamshidian ◽  
Sayedali Mousavi ◽  
Arash Karimipour ◽  
Iskander Tlili

Purpose In this paper, the uncertainties important components and the structure status are obtained by using the condition monitoring, expert groups and multiple membership functions by creating a fuzzy system in MATLAB software. Design/methodology/approach In the form of fuzzy type, the average structural safety must be followed to replace the damages or to absolutely control the decision-making. Uncertainty in the functionality of hydraulic automated guided vehicles (AGVs), without knowing the reliability of pieces, can cause failure in the manufacturing process. It can be controlled by the condition monitoring pieces done by measurement errors and ambiguous boundaries. Findings As a result, this monitoring could increase productivity with higher quality in delivery in flexible manufacturing systems with an increase of 70% reliability mutilation for the hydraulic AGV parts. Originality/value Hydraulic AGVs play a vital role in flexible manufacturing in recent years. Lately, several strategies for maintenance and repairing of hydraulic AGVs exist in the industry but are still confronted with many uncertainties. The hydraulic AGV is faced with uncertainty after 10 years of working in terms of reliability. Reconstruction of the old parts with the new parts may not have the quality and durability.


2013 ◽  
Vol 329 ◽  
pp. 172-175
Author(s):  
Jin Feng Wang ◽  
Guang Feng Zhang ◽  
Xian Zhang Feng

For the rigid automatic line, although its production efficiency is high, but the flexible is less in the machining process, the machine and the assembly line need be shut down to adjust or replace for machine tools, jigs, tools, and tooling equipment, etc. When the work pieces for the machining is changed. It caused a heavy workload, wasting a lot of time. Flexible Manufacturing Systems consisted of unified control system, material handling system and a set of digital control processing equipment; it is the automation machinery manufacturing system to adapt the processing object transform. It has become one of the important means of manufacturing industry to obtain the advantages of market competitiveness. This paper gives the composition, algorithm and application of learning system concept, composition, and classification, characteristics of the flexible manufacturing system, the development overview and its application are induced in this paper.


Sign in / Sign up

Export Citation Format

Share Document