Short-Term Oil Price Forecasting Based on State Space Model

2011 ◽  
Vol 403-408 ◽  
pp. 2530-2534
Author(s):  
Wei Qi Li ◽  
Lin Wei Ma ◽  
Ya Ping Dai ◽  
Dong Hai Li

In competitive petroleum markets, oil price forecasting has always been an important strategic tool for oil producers and consumers to predict market behavior. In this study, we researched the monthly crude oil price in the period between 1988 and 2009. Firstly, we present a state space model to represent oil price system. Secondly, we determine the parameter estimates of the state space model for oil price through a faster algorithm to compute the likelihood function. Lastly, we use the Kalman filter method to estimate the next three months’ oil price and compare it with the econometric structure model as a benchmark. Empirical results indicate that the state space model performs well in terms of some standard statistics indices, and it may be a promising method for short-term oil price forecasting.

Author(s):  
A. F. Adedotun ◽  
T. Latunde ◽  
O. A. Odusanya

This study modelled and estimated climatic data using the state-space model. The study was specifically to identify the pattern of the trend movement i.e., increase or decrease in the occurrence of the climatic change; to use of Univariate Kalman Filter for the computation of the likelihood function for climatic projections; to modelling the climatic dataset using the state-space model and to assess the forecasting power of the state-space models. The data used for the work includes temperature and rainfall for periods January 1991 to December 2017. The data are tested for normality. Shapiro-Wilk, Anderson-Darling and Kolmogorov-Smirnov test of normality for the climatic data all showed that the variables are not normally distributed. The work spans the use of breaking trend regression model to fit climatic data to estimate the slopes which show much increase in climatic data has been recorded from the initial time data collection until the present. Investigations and diagnostic are carried out by checking for corrections in the residuals and also checking for periodicity in the residuals. The results of this investigation show significant autocorrelation in the residuals indicating the presence of underlying noise terms which is not accounted for. By treating the residual as an autoregressive moving average (ARMA) process whereby we can obtain its spectral density, the result from the parametric spectral estimate shows underlying periodic patterns for monthly data, thus, leads to a discussion on the need to treat climatic data as a structural time series model. We select appropriate models by considering the goodness of fit of the model by comparing the Akaike information criterion (AIC) values. Parameters are estimated and accomplished with some measures of precision.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ji Chol ◽  
Ri Jun Il

Abstract The modeling of counter-current leaching plant (CCLP) in Koryo Extract Production is presented in this paper. Koryo medicine is a natural physic to be used for a diet and the medical care. The counter-current leaching method is mainly used for producing Koryo medicine. The purpose of the modeling in the previous works is to indicate the concentration distributions, and not to describe the model for the process control. In literature, there are no nearly the papers for modeling CCLP and especially not the presence of papers that have described the issue for extracting the effective components from the Koryo medicinal materials. First, this paper presents that CCLP can be shown like the equivalent process consisting of two tanks, where there is a shaking apparatus, respectively. It allows leachate to flow between two tanks. Then, this paper presents the principle model for CCLP and the state space model on based it. The accuracy of the model has been verified from experiments made at CCLP in the Koryo Extract Production at the Gang Gyi Koryo Manufacture Factory.


1994 ◽  
Vol 20 (2) ◽  
pp. 143-148 ◽  
Author(s):  
Siddhartha Chib ◽  
Ram C. Tiwari

2018 ◽  
Vol 51 (15) ◽  
pp. 497-502
Author(s):  
Rishi Relan ◽  
Koen Tiels ◽  
Jean-Marc Timmermans ◽  
Johan Schoukens

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1596 ◽  
Author(s):  
Xin Zhao ◽  
Haikun Wei ◽  
Chenxi Li ◽  
Kanjian Zhang

The ability to predict wind speeds is very important for the security and stability of wind farms and power system operations. Wind speeds typically vary slowly over time, which makes them difficult to forecast. In this study, a hybrid nonlinear estimation approach combining Gaussian process (GP) and unscented Kalman filter (UKF) is proposed to predict dynamic changes of wind speed and improve forecasting accuracy. The proposed approach can provide both point and interval predictions for wind speed. Firstly, the GP method is established as the nonlinear transition function of a state space model, and the covariance obtained from the GP predictive model is used as the process noise. Secondly, UKF is used to solve the state space model and update the initial prediction of short-term wind speed. The proposed hybrid approach can adjust dynamically in conjunction with the distribution changes. In order to evaluate the performance of the proposed hybrid approach, the persistence model, GP model, autoregressive (AR) model, and AR integrated with Kalman filter (KF) model are used to predict the results for comparison. Taking two wind farms in China and the National Renewable Energy Laboratory (NREL) database as the experimental data, the results show that the proposed hybrid approach is suitable for wind speed predictions, and that it can increase forecasting accuracy.


2010 ◽  
Vol 40-41 ◽  
pp. 27-33 ◽  
Author(s):  
Yi Hui Lin ◽  
Hai Bo Zhang

The method of state space model fitting is carried out by using the linear relation of the variable of the differential equations and separating the steady process and instant process to eliminate the steady errors course by instant errors. The improved fitting method is without solving the linear differential equations or using any iterative methods. The coefficient of the state space model can be solve simply using matrix operation under the premise of high accuracy, so it has a higher computational efficiency than former least square method. And this method can also be used with other fitting method. Finally, to illustrate the validity and accuracy of the improved method, a small perturbation state space model of a certain turboshaft engine model has been established by this method, and the simulation result between state space model and nonlinear model was also compared. Also, the state space model could be applied to fault diagnosis and control system design for aeroengines.


2009 ◽  
Vol 10 (2) ◽  
pp. 117-138 ◽  
Author(s):  
Wai-Yuan Tan ◽  
Weiming Ke ◽  
G. Webb

We develop a state space model documenting Gompertz behaviour of tumour growth. The state space model consists of two sub-models: a stochastic system model that is an extension of the deterministic model proposed by Gyllenberg and Webb (1991), and an observation model that is a statistical model based on data for the total number of tumour cells over time. In the stochastic system model we derive through stochastic equations the probability distributions of the numbers of different types of tumour cells. Combining with the statistic model, we use these distribution results to develop a generalized Bayesian method and a Gibbs sampling procedure to estimate the unknown parameters and to predict the state variables (number of tumour cells). We apply these models and methods to real data and to computer simulated data to illustrate the usefulness of the models, the methods, and the procedures.


Sign in / Sign up

Export Citation Format

Share Document