Preparation and Characterization of the Typical Pt-NSR Catalyst

2011 ◽  
Vol 412 ◽  
pp. 365-369
Author(s):  
Yuan Feng Huang ◽  
Wei Jun Zhang ◽  
Li Shen ◽  
Jin Hu ◽  
Zhuo Heng Li ◽  
...  

A series of Ba-Al-O NSR supports and Pt/Ba-Al-O NSR catalysts are prepared by co-precipitation and impregnation method in this work. The catalyst and the support are characterized by XRD, SEM, SBET performance testing. The structure and texture of the supports is observed and discussed. The results of SBET indicate that the supports possess relative high specific surface area (94~110 m2/g). Temperature programmed reduction is characterized by means of H2-TPR.

2006 ◽  
Vol 24 (1) ◽  
pp. 34-38 ◽  
Author(s):  
Yongxiu Li ◽  
Xiaoyun Lin ◽  
Yizheng Wang ◽  
Junming Luo ◽  
Weili Sun

2011 ◽  
Vol 412 ◽  
pp. 361-364
Author(s):  
Wei Jun Zhang ◽  
Yuan Feng Huang ◽  
Li Shen ◽  
Jun Liu ◽  
Xiao Qing Luo ◽  
...  

A series of Ba-Al-O/NSR supports were prepared by co-precipitation in this work. The effect of Al/Ba atomic ratio and calcination temperature on the structure and texture of the supports was investigated carefully. The XRD spectra show that Ba is mainly exist in the form of BaAl2O4, and Al exists in Al2O3. The results of SBET indicate that the supports possess relative high specific surface area (70~150 m2/g). The effect of different parameters on the process of supports synthesized was investigated carefully. The results show that the structure and specific surface area of support is significantly depended on calcination temperature.


2004 ◽  
Vol 20 (03) ◽  
pp. 251-255
Author(s):  
Zeng Li ◽  
◽  
Wang Chun-Ming ◽  
Wei Ji-Ying ◽  
Zhu Yue-Xiang ◽  
...  

2018 ◽  
Vol 53 (18) ◽  
pp. 12885-12893 ◽  
Author(s):  
Zhifang Fei ◽  
Zichun Yang ◽  
Guobing Chen ◽  
Kunfeng Li ◽  
Shuang Zhao ◽  
...  

2011 ◽  
Vol 295-297 ◽  
pp. 668-671 ◽  
Author(s):  
Jun De Xing ◽  
Xiao Fei Jia

A series of Cu-based catalysts for the synthesis of indole by the reaction of aniline and ethylene glycol were prepared and characterized by ICP-AES and XRD. The results indicated that the activity and stability of Cu/SiO2 catalyst was increased after adding Zn, Mn, Cr and Fe promoters. Mn promoter was favorable for the dispersion of Cu, Zn, Cr, Fe and enlarged the specific surface area of catalysts. It could be seen that the catalysts prepared by impregnation method had better stability and higher activity than the catalysts prepared by co-precipitation method. The catalysts with small grain size of Cu had higher activity than those with big grain size. Some catalysts showed excellent performances in this reaction.


Sign in / Sign up

Export Citation Format

Share Document