temperature programmed reduction
Recently Published Documents


TOTAL DOCUMENTS

359
(FIVE YEARS 34)

H-INDEX

56
(FIVE YEARS 3)

2022 ◽  
pp. 179146
Author(s):  
Cristina Silvia Stoicescu ◽  
Dana Culita ◽  
Nicolae Stanica ◽  
Florica Papa ◽  
Razvan Nicolae State ◽  
...  

2021 ◽  
Author(s):  
Dennis Beierlein ◽  
Dorothea Häussermann ◽  
Yvonne Traa ◽  
Elias Klemm

Abstract We developed a rapid aging method for Ni/Al2O3 methanation catalysts mimicking the real aging in the actual application. The method is based on hydrothermal deactivation of the catalyst at 600 or 700 °C, which leads to a catalyst with nearly constant conversion after a much shorter time period compared to normal aging. The hydrothermally aged catalysts are characterized by N2 adsorption, X-ray powder diffraction, temperature-programmed reduction and H2 chemisorption. The catalytic performance of the aged catalysts is comparable to the one of a catalyst deactivated in a long-term measurement with up to 720 h on stream. The time needed for reaching a stable conversion can be diminished by rapid aging by a factor of 10. The investigations also showed that the long-term deactivation is caused by Ni particle sintering and that the support pores limit the Ni particle size. Graphical Abstract


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 444
Author(s):  
Ivan Bondarchuk ◽  
Francisco José Cadete Santos José Cadete Santos Aires ◽  
Grigoriy Mamontov ◽  
Irina Kurzina

One of the key factors for producing highly dispersed controlled nanoparticles is the method used for metal deposition. The decomposition of metal-organic precursors is a good method for deposition of metal nanoparticles with very small sizes and narrow size distributions on the surface of various supports. The preparation process of Pd and bimetallic Pd-Sn nanoparticles supported onto γ‑Al2O3 is considered. The samples were prepared by diffusional co-impregnation of the γ‑Al2O3 support by using organometallic Pd(acac)2 and Sn(acac)2Cl2 precursors. To achieve the formation of Pd and bimetallic Pd-Sn nanoparticles on the support surface, the synthesized samples were then subjected to thermal decomposition under Ar (to decompose the organometallic bound to the surface while keeping the formed nanoparticles small) followed by an oxidation in O2 (to eliminate the organic compounds remaining on the surface) and a reduction in H2 (to reduce the nanoparticles oxidized during the previous step). A combination of methods (ICP-OES, TPR-H2, XPS, TEM/EDX) was used to compare the physical-chemical properties of the synthesized Pd and bimetallic Pd-Sn nanoparticles supported on the γ‑Al2O3. The three samples exhibit narrow size distribution with a majority on nanoparticles between 3 and 5 nm. Local EDX measurements clearly showed that the nanoparticles are bimetallic with the expected chemical composition and the measured global composition by ICP-OES. The surface composition and electronic properties of Pd and Sn on the γ-Al2O3 support were investigated by XPS, in particular the chemical state of palladium and tin after each step of thermal decomposition treatments (oxidation, reduction) by the XPS method has been carried out. The reducibility of the prepared bimetallic nanoparticles was measured by hydrogen temperature programmed reduction (TPR-H2). The temperature programmed reduction TPR-H2 experiments have confirmed the existence of strong surface interactions between Pd and Sn, as evidenced by hydrogen spillover of Pd to Sn (Pd-assisted reduction of oxygen precovered Sn). These results lead us to propose a mechanism for the formation of the bimetallic nanoparticles.


Author(s):  
Chiara Negri ◽  
Elisa Borfecchia ◽  
Andrea Martini ◽  
Gabriele Deplano ◽  
Kirill A. Lomachenko ◽  
...  

AbstractAmmonia-mediated selective catalytic reduction (NH3-SCR) using Cu-exchanged chabazite zeolites as catalysts is one of the leading technologies for NOx removal from exhaust gases, with CuII/CuI redox cycles being the basis of the catalytic reaction. The amount of CuII ions reduced by NO/NH3 can be quantified by the consumption of NO during temperature-programmed reduction experiments (NO-TPR). In this article, we show the capabilities of in situ X-ray absorption near-edge spectroscopy (XANES), coupled with multivariate curve resolution (MCR) and principal component analysis (PCA) methods, in following CuII/CuI speciation during reduction in NO/NH3 after oxidation in NO/O2 at 50 °C on samples with different copper loading and pretreatment conditions. Our XANES results show that during the NO/NH3 ramp CuII ions are fully reduced to CuI in the 50–290 °C range. The number of species involved in the process, their XANES spectra and their concentration profiles as a function of the temperature were obtained by MCR and PCA. Mixed ligand ammonia solvated complexes [CuII(NH3)3(X)]+ (X = OH−/O− or NO3−) are present at the beginning of the experiment, and are transformed into mobile [CuI(NH3)2]+ complexes: these complexes lose an NH3 ligand and become framework-coordinated above 200 °C. In the process, multiple CuII/CuI reduction events are observed: the first one around 130 °C is identified with the reduction of [CuII(NH3)3(OH/O)]+ moieties, while the second one occurs around 220–240 °C and is associated with the reduction of the ammonia-solvated Cu-NO3− species. The nitrate concentration in the catalysts is found to be dependent on the zeolite Cu loading and on the applied pretreatment conditions. Ammonia solvation increases the number of CuII sites available for the formation of nitrates, as confirmed by infrared spectroscopy.


2021 ◽  
Author(s):  
Tianyu Hu ◽  
Zhiquan Yu ◽  
Shan Liu ◽  
Bingyu Liu ◽  
Zhichao Sun ◽  
...  

Citric acid (CA) modified Ni3P catalysts with small particle size were prepared by H2 temperature-programmed reduction (H2-TPR) of the precursors, which were prepared by co-precipitation with Ni(NO3)2·6H2O and (NH4)2HPO4, using...


CrystEngComm ◽  
2021 ◽  
Author(s):  
Malgorzata Malecka ◽  
Piotr Woźniak

This work presents results of a multitechnique (HRTEM – high resolution transmission electron microscopy, EDX – energy-dispersive X-ray spectroscopy, XRD – X-ray diffraction and H2-TPR - temperature programmed reduction by...


Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1450
Author(s):  
Nichthima Dharmasaroja ◽  
Tanakorn Ratana ◽  
Sabaithip Tungkamani ◽  
Thana Sornchamni ◽  
David S. A. Simakov ◽  
...  

In this paper, the 10 wt% Ni/Al2O3-MgO (10Ni/MA), 5 wt% Ni-5 wt% Ce/Al2O3-MgO (5Ni5Ce/MA), and 5 wt% Ni-5 wt% Co/Al2O3-MgO (5Ni5Co/MA) catalysts were prepared by an impregnation method. The effects of CeO2 and Co doping on the physicochemical properties of the Ni/Al2O3-MgO catalyst were comprehensively studied by N2 adsorption-desorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), H2 temperature programmed reduction (H2-TPR), CO2 temperature programmed reduction (CO2-TPD), and thermogravimetric analysis (TGA). The effects on catalytic performance for the combined steam and CO2 reforming of methane with the low steam-to-carbon ratio (S/C ratio) were evaluated at 620 °C under atmospheric pressure. The appearance of CeO2 and Co enhanced the oxygen species at the surface that decreased the coke deposits from 17% for the Ni/MA catalyst to 11–12% for the 5Ni5Ce/MA and 5Ni5Co/MA catalysts. The oxygen vacancies in the 5Ni5Ce/MA catalyst promoted water activation and dissociation, producing surface oxygen with a relatively high H2/CO ratio (1.6). With the relatively low H2/CO ratio (1.3), the oxygen species at the surface was enhanced by CO2 activation-dissociation via the redox potential in the 5Ni5Co/MA catalyst. The improvement of H2O and CO2 dissociative adsorption allowed the 5Ni5Ce/MA and 5Ni5Co/MA catalysts to resist the carbon formation, requiring only a low amount of steam to be added.


Sign in / Sign up

Export Citation Format

Share Document