Dynamic Analysis of Large-Scale Power House

2012 ◽  
Vol 446-449 ◽  
pp. 837-840
Author(s):  
Yu Zhao ◽  
Shu Fang Yuan ◽  
Jian Wei Zhang

The underwater structure of power house is major structure under the dynamic loads of unit. The vibration problem is very common in operation. So the structures should have sufficient stiffness to resist dynamic loads of unit. This paper establishes three-dimensional finite element models with finite element analysis software—ANSYS. Dynamic characteristics of the power house and dynamic responses of structure under earthquake are analyzed. The results of the computation show that fluid-solid coupling may be ignored when studying dynamic characteristics of structures of the underground power house.

2020 ◽  
Vol 7 (5) ◽  
pp. 200309
Author(s):  
Jiaqiong Liu ◽  
Bo Yan ◽  
Guizao Huang ◽  
Zheyue Mou ◽  
Xin Lv ◽  
...  

Refined three-dimensional (3D) finite-element (FE) models of typical aluminium conductor steel reinforced (ACSR) and formed aluminium conductor steel reinforced (FACSR) with structural details to simulate their static and dynamic characteristics are proposed. Taking into account the elastoplastic behaviour of the aluminium wires, the tensile mechanical properties and coupling between tension and torsion of the two types of conductors under tensile loading are numerically investigated. Furthermore, dynamic responses of two transmission lines, in which the refined 3D segment models and equivalent beam models of the two types of conductors are used, after ice-shedding are numerically simulated and the dynamic characteristics of the conductors are analysed. Finally, based on the numerical simulation results, the fatigue lives of the aluminium wires are estimated and the wear between the wires is discussed. It is revealed that taking into account the structural details of the conductors in the strength design of transmission lines is necessary, and the mechanical characteristics of FACSR are better than those of the ACSR in both static and dynamic situations.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


Sign in / Sign up

Export Citation Format

Share Document