The Stability Evaluation of Radial Ring Rolling

2012 ◽  
Vol 482-484 ◽  
pp. 1229-1232
Author(s):  
Yong Xing Hao ◽  
Ya Mei Han ◽  
Hai Tao Cheng ◽  
Hua Ying Guo

In the Non-stability radial ring rolling process, the ring may collide with the guide roll, making the ring become a polygon. In extreme cases the rolling process could be terminated and the ring be scrapped. The stability evaluation of radial ring rolling has great theory and practice significance. In this article, based on the kinematics theory, a classified research on the dynamic phenomenon of radial ring rolling was done, and a stability evaluation method during the radial ring rolling was put forward. The evaluation provided a good base for the future ring rolling dynamic research.

2007 ◽  
Vol 561-565 ◽  
pp. 1875-1878 ◽  
Author(s):  
Yong Xing Hao ◽  
Lin Hua ◽  
Gui Shan Chen ◽  
Dao Ming Wang

Non-stability factors affect stability of radial ring rolling process, and lead to fluctuating of ring position. This decreases rolling precision. Evaluating stability of the process is very important. A stability evaluating method is proposed. The stability can be measured with the mean square root of sequence of oscillation of ring geometrical centerline displacement. Using ABAQUS/Explicit, the stability is analyzed. It is showed that guide-roll position angle has the significant effect to the stability. If guide-roll is located at the tangential position to the ring’s fringe, the stability will vary with the angle between two planes. One passes through axes of guide roll and ring blank, and another passes through axes of drive roll and ring blank. The stability is highest when guide roll is situated at the position angle of 100˚to 130˚at exit side of ring rolling mill.


2006 ◽  
Vol 532-533 ◽  
pp. 141-144 ◽  
Author(s):  
Zhi Chao Sun ◽  
He Yang ◽  
Lan Yun Li

Guide rolls play an important role in controlling both the ring circularity and the stability of cold ring rolling process. However, it is difficult to predict and control the motion of the guide rolls due to the complexity of process associated with the coupled effects of multi-factors. In this paper, a reasonable controlling model of the guide rolls is proposed, and the functional relationship between the motion track of the guide rolls and their setup parameters and process ones is established, by which the guide rolls motion track can be determined. On this basis, a 3D-FE simulation model for cold ring rolling is developed under the ABAQUS software environment and the effects of the initial position and motion track of the guide rolls on the forming stability, ring circularity, rolling force, and oscillating are investigated. Taking the forming stability and ring circularity as objects, the optimum initial position and motion track of the guide rolls are obtained.


2010 ◽  
Vol 154-155 ◽  
pp. 278-281
Author(s):  
Dong Zhao ◽  
Zeng Hai Xu ◽  
Qiang Wang ◽  
Dong Mei Cai

The guiding forces will affect the stability of the ring rolling process and the quality of the product directly. In this paper, the guiding forces and the sector gear forces are analyzed by building theoretical equations and numerical value simulations. The variation tendencies of the guiding forces and the sector gear forces changing with the ring’s outer diameter in both steady and unsteady ring rolling phases are found out base on the theoretical and simulation analyses.


2008 ◽  
Vol 575-578 ◽  
pp. 367-372 ◽  
Author(s):  
L.G. Guo ◽  
He Yang

Nowadays, 3D-FE Modeling and simulation is an indispensable method for the optimum design and precise control of radial-axial ring rolling process for its complexities. In this paper, the unique forming characteristics of radial-axial ring rolling have first been summarized, and then some key technologies for 3D-FE modeling of the process have been presented and their solution schemes have been given out, lastly the modeling and simulation of radial-axial ring rolling process have been realized using elastic-plastic dynamic explicit procedure under ABAQUS environment. The work provides an important basis and platform for the future investigations, such as forming mechanism and laws, process optimum design and precise control.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 79
Author(s):  
Qiuwei Yang ◽  
Zhikun Ba ◽  
Zhuo Zhao ◽  
Xi Peng ◽  
Yun Sun

Blasting impact load may be encountered during the construction of some pile foundation projects. Due to the effect of blasting impact, hole collapse can easily occur in the hole-forming stage of pile foundation construction. In order to prevent hole collapse, it is very necessary to evaluate the stability of a pile hole wall before pile foundation construction. The calculation of hole collapse can usually be attributed to an axisymmetric circular hole stress concentration problem. However, the existing collapse failure theory of pile hole hardly considers the effect of blasting impact load. In view of this, this paper proposes the stability evaluation method of a pile hole wall under blasting impact. Compared with the existing collapse failure theory, the proposed method fully considers the effect of blasting impact stress. Using Mohr–Coulomb strength theory and symmetry analysis, the strength condition of collapse failure is established in this work for accurate evaluation of the stability of a hole wall. The proposed stability evaluation method is demonstrated by a pile foundation construction project of a bridge. Moreover, a shaking table test on the pile hole model was performed to verify the proposed method by experimental data. The results indicate the effectiveness and usability of the proposed method. The proposed method provides a feasible way for the stability analysis of a pile hole wall under blasting impact.


2019 ◽  
Vol 291 ◽  
pp. 02006
Author(s):  
Andrzej Gontarz ◽  
Piotr Surdacki

Ring rolling is a hot forming process for producing rings that have large diameters when compared to their cross sections. This process is very dynamic and involves considerable variations in ring shape and size. One of the failure modes in ring rolling processes is slip that occurs when a thickness reduction, exceeds the limit value. The thickness reduction depends on the tool speed and dimensions as well as ring size, and varies over time. This paper reports results of a study investigating the thickness reduction with respect to slip occurrence. In terms of wall thickness reduction, the process can be divided into three distinct stages (excluding the sizing stage): (i) initial stage corresponding to the first revolution of the roll, (ii) main stage, when the proper ring rolling takes place, (iii) final stage, when the main roll does not move in an axial direction but the ring is being formed during one revolution of the tool. It has been found that the most slip-prone moment is the end of the second and the beginning of the third stage of the ring rolling process, when the wall thickness reduction is the highest. Based on a comparison of the calculated thickness reduction and its limit values, it could be predicted whether slip would occur, and if so – in what stage of the rolling process. Numerical results and experimental findings are in good agreement.


Sign in / Sign up

Export Citation Format

Share Document