A Cheap Synthetic Route to Commercial Ruthenium N3 Dye for Sensitizing Solar Cell Applications

2012 ◽  
Vol 488-489 ◽  
pp. 1049-1054 ◽  
Author(s):  
Rukkiat Jitchati ◽  
Yuranan Thathong ◽  
Kittiya Wongkhan

Dye-sensitized Solar Cells (DSCs) Have Received Widespread Attention Owing to their Low Cost, Easy Fabrication, and Relatively High Solar-to-electricity Conversion Efficiency. Based on the Tio2 Electrode, Ruthenium Complex Dye, Liquid Electrolyte, and Pt Counter Electrode, Dscs Have Already Exhibited an Efficiency above 11% and Offer an Appealing Alternative to Conventional Solar Cells. however, until now the Commercial and Well Known Standard Dye Is the Ruthenium Complex, Namely, Cis-bis(isothiocyanato)-bis(2,2'-bipyridyl-4,4'dicarboxylato)ruthenium(II) (N3) which Has Been Widely Used around the Word. in this Article, N3 Standard Dye Was Synthesized and Characterized by Two Synthetic Routes: Grätzel’s Protocol and a One-pot Reaction from Cheap and Easily Prepared Starting Materials.

2021 ◽  
Vol 21 (1) ◽  
pp. 35
Author(s):  
Putri Nur Anggraini ◽  
Erlyta Septa Rosa ◽  
Natalita Maulani Nursam ◽  
Rico Fernado Sinaga ◽  
Shobih Shobih

Dye-sensitized solar cells (DSSC) has been well known as a highly competitive photovoltaic technology owing to its interesting characteristics, such as, low-cost, simple, and convenient to modify both chemically and physically. One way to reduce the production cost of DSSCs is to conduct a structural modification in the form of a monolithic structure by using a single conductive substrate to accommodate both photoelectrode and counter electrode. However, the photovoltaic performance of monolithic DSSCs is typically still lacking compared to its conventional DSSCs counterparts that uses sandwich structure. One of the crucial factors that determine the photovoltaic performance of a monolithic DSSC is its electrolyte. In this work, the performance of monolithic DSSCs were studied through modifications of the electrolyte component. Two types of commercial liquid electrolytes that have different chemical properties were used and combined into various compositions, and the resulting DSSCs performances were compared. The stability of the monolithic cells was also monitored by measuring the cells repeatedly under the same condition. The result showed that during the first measurement the highest performance with a power conversion efficiency of 1.69% was achieved by the cell with a higher viscosity electrolyte. Meanwhile, the most stable performance is shown by the cell containing lower viscosity electrolyte, which achieved an efficiency of 0.66% that measured on day 35. 


2020 ◽  
pp. 16-21
Author(s):  
PHITCHAPHORN KHAMMEE ◽  
YUWALEE UNPAPROM ◽  
UBONWAN SUBHASAEN ◽  
RAMESHPRABU RAMARAJ

Recently, dye-sensitized solar cells (DSSC) have concerned significant attention attributable to their material preparation process, architectural and environmental compatibility, also low cost and effective photoelectric conversion efficiency. Therefore, this study aimed to use potential plant materials for DSSC. This research presents the extraction of natural pigments from yellow cotton flowers (Cochlospermum regium). In addition, the natural pigments were revealed that outstanding advantages, including a wide absorption range (visible light), easy extraction method, safe, innocuous pigments, inexpensive, complete biodegradation and ecofriendly. Methanol was used as a solvent extraction for the yellow cotton flower. The chlorophylls and carotenoid pigments extractions were estimated by a UV-visible spectrometer. The chlorophyll-a, chlorophyll-b, and carotenoid yield were 0.719±0.061 µg/ml, 1.484±0.107 µg/ml and 7.743±0.141 µg/ml, respectively. Thus, this study results suggested that yellow cotton flowers containing reasonable amounts appealable in the DSSC production.


Nanoscale ◽  
2014 ◽  
Vol 6 (23) ◽  
pp. 14433-14440 ◽  
Author(s):  
Sheng-qi Guo ◽  
Tian-zeng Jing ◽  
Xiao Zhang ◽  
Xiao-bing Yang ◽  
Zhi-hao Yuan ◽  
...  

In this work, we report the synthesis of mesoporous Bi2S3 nanorods under hydrothermal conditions without additives, and investigated their catalytic activities as the CE in DSCs by I–V curves and tested conversion efficiency.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2150
Author(s):  
Ji-Hye Kim ◽  
Sung-Yoon Park ◽  
Dong-Hyuk Lim ◽  
So-Young Lim ◽  
Jonghoon Choi ◽  
...  

Organic solvents used for electrolytes of dye-sensitized solar cells (DSSCs) are generally not only toxic and explosive but also prone to leakage due to volatility and low surface tension. The representative dyes of DSSCs are ruthenium-complex molecules, which are expensive and require a complicated synthesis process. In this paper, the eco-friendly DSSCs were presented based on water-based electrolytes and a commercially available organic dye. The effect of aging time after the device fabrication and the electrolyte composition on the photovoltaic performance of the eco-friendly DSSCs were investigated. Plasma treatment of TiO2 was adopted to improve the dye adsorption as well as the wettability of the water-based electrolytes on TiO2. It turned out that the plasma treatment was an effective way of improving the photovoltaic performance of the eco-friendly DSSCs by increasing the efficiency by 3.4 times. For more eco-friendly DSSCs, the organic-synthetic dye was replaced by chlorophyll extracted from spinach. With the plasma treatment, the efficiency of the eco-friendly DSSCs based on water-electrolytes and chlorophyll was comparable to those of the previously reported chlorophyll-based DSSCs with non-aqueous electrolytes.


Molecules ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 198 ◽  
Author(s):  
Michèle Chevrier ◽  
Alberto Fattori ◽  
Laurent Lasser ◽  
Clément Kotras ◽  
Clémence Rose ◽  
...  

Chlorophyll a derivatives were integrated in “all solid-state” dye sensitized solar cells (DSSCs) with a mesoporous TiO2 electrode and 2′,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene as the hole-transport material. Despite modest power conversion efficiencies (PCEs) between 0.26% and 0.55% achieved for these chlorin dyes, a systematic investigation was carried out in order to elucidate their main limitations. To provide a comprehensive understanding of the parameters (structure, nature of the anchoring group, adsorption …) and their relationship with the PCEs, density functional theory (DFT) calculations, optical and photovoltaic studies and electron paramagnetic resonance analysis exploiting the 4-carboxy-TEMPO spin probe were combined. The recombination kinetics, the frontier molecular orbitals of these DSSCs and the adsorption efficiency onto the TiO2 surface were found to be the key parameters that govern their photovoltaic response.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Yuancheng Qin ◽  
Qiang Peng

Dye-sensitized solar cells (DSSCs) have attracted considerable attention in recent years due to the possibility of low-cost conversion of photovoltaic energy. The DSSCs-based ruthenium complexes as sensitizers show high efficiency and excellent stability, implying potential practical applications. This review focuses on recent advances in design and preparation of efficient ruthenium sensitizers and their applications in DSSCs, including thiocyanate ruthenium sensitizers and thiocyanate-free ruthenium sensitizers.


Sign in / Sign up

Export Citation Format

Share Document