Research of SVC Control System Based on Real-Time Operation System for Wind Farm

2012 ◽  
Vol 516-517 ◽  
pp. 1921-1925 ◽  
Author(s):  
Jin Liu ◽  
Ze Yu Zhong

Wind power generation was developed rapidly in China. And many wind farms are configured Dynamic Static Var Compensators (SVCs) as reactive power compensator, which can meet the dynamic demands of the reactive power compensation for the wind farm. The paper put forward a coordination control strategy of reactive power for wind farm based on embedded real-time operation system in DSP, and by using LabVIEW to realize PC management and network communication management, and provides the research foundation for coordination and the optimal control of reactive power in large wind farm.

2010 ◽  
Vol 29-32 ◽  
pp. 868-873 ◽  
Author(s):  
Jian Wan ◽  
Tai Yong Wang ◽  
Yi Yuan

To get over the problem that only one type of filter cannot meet the requests of field monitoring, a rotating machine monitoring system that can reconstruct filter type was developed based on ARM, DSP and FPAA. The dual-CPU consisted of ARM and DSP was used as the computing and control core of the system; FPAA was used to achieve that the filter type can be reconfigured; RT-Linux was imported as embedded real-time operation system, which achieved hiberarchy design of software and enhanced the operational stability and real-time performance of task assignment. Put into practice, it was confirmed that the system was effective.


2021 ◽  
Vol 13 (2) ◽  
pp. 624
Author(s):  
Van-Hai Bui ◽  
Akhtar Hussain ◽  
Thai-Thanh Nguyen ◽  
Hak-Man Kim

Due to the uncertainty in output power of wind farm (WF) systems, a certain reserve capacity is often required in the power system to ensure service reliability and thereby increasing the operation and investment costs for the entire system. In order to reduce this uncertainty and reserve capacity, this study proposes a multi-objective stochastic optimization model to determine the set-points of the WF system. The first objective is to maximize the set-point of the WF system, while the second objective is to maximize the probability of fulfilling that set-point in the real-time operation. An increase in the probability of satisfying the set-point can reduce the uncertainty in the output power of the WF system. However, if the required probability increases, the set-point of the WF system decreases, which reduces the profitability of the WF system. Using the proposed method helps the WF operator in determining the optimal set-point for the WF system by making a trade-off between maximizing the set-point of WF and increasing the probability of fulfilling this set-point in real-time operation. This ensures that the WF system can offer an optimal set-point with a high probability of satisfying this set-point to the power system and thereby avoids a high penalty for mismatch power. In order to show the effectiveness of the proposed method, several case studies are carried out, and the effects of various parameters on the optimal set-point for the WF system are also analyzed. According to the parameters from the transmission system operator (TSO) and wind speed profile, the WF operator can easily determine the optimal set-point using the proposed strategy. A comparison of the profits that the WF system achieved with and without the proposed method is analyzed in detail, and the set-point of the WF system in different seasons is also presented.


2013 ◽  
Vol 325-326 ◽  
pp. 1759-1765
Author(s):  
Ya Qin Chen ◽  
Dian Fu Ma ◽  
Ying Wang ◽  
Xian Qi Zhao

It is crucial for real-time embedded system to design and verify for a little fault may lead to a catastrophe. Architecture Analysis and Design Language (AADL) is a modeling language used to design and analysis the architecture of real-time embedded system based on Model Driven Architecture (MDA). Code generation of AADL model to codes running on the Real-time Operation System can avoid hand-writing mistakes and improve the efficiency of development. Partitioning is introduced into embedded system to control fault transmission. This paper presents a mapping approach to generate codes from AADL model for partitioned system, and the generated codes which include configuration codes and C codes will run on a partitioned platform.


Sign in / Sign up

Export Citation Format

Share Document