Diagnosis of Stator Winding Inter-Turn Circuit Faults in Induction Motors Based on Wavelet Packet Analysis and Neural Network

2012 ◽  
Vol 529 ◽  
pp. 37-42 ◽  
Author(s):  
Jun Yong Sang ◽  
Chen Hao ◽  
Peng Chao Wang

Aiming at the problem of the traditional stator current frequency spectrum analysis method cannot completely guarantee the accurate identification of stator winding inter-turn faults,the diagnosis method of stator winding inter-turn based on wavelet packet analysis (WPA) and Back Propagation (BP) neural network is put forward. The finite element model of the three-phase asynchronous motor which is based on Magnet is established, and analysis the magnetic flux density and current of the motor through simulation in normal and in the situation of short-circuit fault of stator winding inter-turn, the current signal of stator is analysised by wavelet packet , and the feature vector of frequency band energy is extracted as the basis to judge the state of induction motor running, and the motor state is identified by BP neural network, and the mapping from feature vector to the motor state is established. Simulation results show that: The diagnosis system of inter-turn fault based on WPA and BP neural network can effectively identify short-circuit fault between ratios. This is to say that the method has a high fault diagnosis rate.

2014 ◽  
Vol 722 ◽  
pp. 363-366
Author(s):  
You Juan Zheng ◽  
Ping Liao ◽  
Cai Long Qin ◽  
Yu Li

Using wavelet packet neural network method which is consist of wavelet packet and BP neural network to diagnose large rotors by vibration signal .Firstly , according to the spectrum characteristic of large rotors’ common vibration fault ,using the improved wavelet packet method to compute the energy of the spectrum that can reflect the fault information .And then make the feature vector as the input to establish a model of improved wavelet packet neural network for fault diagnosis . Collect the data of five working conditions from the test bench , establish a improved wavelet packet neural network model, and then use the model to diagnose fault. The experimental results show that this method improves the accuracy obviously and calculate fast.


2014 ◽  
Vol 543-547 ◽  
pp. 1064-1067
Author(s):  
Jian Qun Zhang ◽  
De Jian Zhou

As a common fault of motor, the short circuit of rotor winding is important for the accurate diagnosis. In this article, the author collected every status parameter of motor by different sensors, using two BP neural networks to partly diagnose the motor and fusing the results of partly diagnosis by D-S evidence theory. The author increases the creditability of diagnosis results by practices and decreases uncertainty, showing the efficiency of this method.


Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 851-856 ◽  
Author(s):  
Wojciech Pietrowski ◽  
Konrad Górny

AbstractRecently, interest in new diagnostics methods in a field of induction machines was observed. Research presented in the paper shows the diagnostics of induction machine based on torque pulsation, under inter-turn short-circuit, during start-up of a machine. In the paper three numerical techniques were used: finite element analysis, signal analysis and artificial neural networks (ANN). The elaborated numerical model of faulty machine consists of field, circuit and motion equations. Voltage excited supply allowed to determine the torque waveform during start-up. The inter-turn short-circuit was treated as a galvanic connection between two points of the stator winding. The waveforms were calculated for different amounts of shorted-turns from 0 to 55. Due to the non-stationary waveforms a wavelet packet decomposition was used to perform an analysis of the torque. The obtained results of analysis were used as input vector for ANN. The response of the neural network was the number of shorted-turns in the stator winding. Special attention was paid to compare response of general regression neural network (GRNN) and multi-layer perceptron neural network (MLP). Based on the results of the research, the efficiency of the developed algorithm can be inferred.


2006 ◽  
Vol 324-325 ◽  
pp. 205-208
Author(s):  
Qing Guo Fei ◽  
Ai Qun Li ◽  
Chang Qing Miao ◽  
Zhi Jun Li

This paper describes a study on damage identification using wavelet packet analysis and neural networks. The identification procedure could be divided into three steps. First, structure responses are decomposed into wavelet packet components. Then, the component energies are used to define damage feature and to train neural network models. Finally, in combination with the feature of the damaged structure response, the trained models are employed to determine the occurrence, the location and the qualification of the damage. The emphasis of this study is put on multi-damage case. Relevant issues are studied in detail especially the selection of training samples for multi-damage identification oriented neural network training. A frame model is utilized in the simulation cases to study the sampling techniques and the multi-damage identification. Uniform design is determined to be the most suitable sampling technique through simulation results. Identifications of multi-damage cases of the frame including different levels of damage at various locations are investigated. The results show that damages are successfully identified in all cases.


Sign in / Sign up

Export Citation Format

Share Document