Synthesis and Characterization of Polyacrylates Side-Chain Liquid Crystalline Polymer via Atom Transfer Radical Polymerization

2012 ◽  
Vol 535-537 ◽  
pp. 1516-1519
Author(s):  
Ying Gang Jia ◽  
Peng Tian ◽  
Kun Ming Song ◽  
Bao Yan Zhang

Atom transfer radical polymerization (ATRP) of methacrylate liquid crystal monomer M (4-((4-(2-(acryloyloxy)ethoxy)benzoyl)oxy)phenyl 4-propylbenzoate) was carried out using CuBr/PMDETA complex as catalyst and 2-bromo-2-methyl-propionic acid ester as initiator. The obtained monomer M and polymer P was characterized via infrared spectroscopy and1H NMR. The phase behavior and mesomorphism were investigated by differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and x-ray diffraction (XRD). The molecular weight and the structure of the polymers were identified with gel permeation chromatography and nuclear magnetic resonance.

2011 ◽  
Vol 181-182 ◽  
pp. 47-50
Author(s):  
Xin De Tang ◽  
Ye Chen ◽  
Xin Wang ◽  
Fa Qi Yu ◽  
Mei Shan Pei

A novel liquid crystalline polymer bearing azobenzene groups in both main chain and side chain has been successfully synthesized by atom transfer radical polymerization (ATRP). Dual bromide-terminated azobenzene was used as the initiator for the ATRP of azobenzene-containing monomer (M6C). The structure of the resulting polymer was confirmed by nuclear magnetic resonance (NMR), and the molecular weight and its dispersity was characterized by gel permeation chromatography (GPC). The mesomorphic properties of this novel polymer were characterized by means of polarized optical microscopy (POM) and differential scanning calorimetry (DSC). The results demonstrated that this polymer can form mesophases.


2010 ◽  
Vol 663-665 ◽  
pp. 92-95
Author(s):  
Xin De Tang ◽  
De Jie Zhou ◽  
Nian Feng Han

An azobenzene derivative substituted with a 2-bromoisobutyryl group was used as an initiator for the atom transfer radical polymerization of 2-[4-(4-ethoxyphenylazo)phenoxy]ethyl methacrylate) (MAZO). The resulting homopolymers (AZO-PMAZO) possess azobenzene moieties both in the main chain and in the side chain. Differential scanning calorimetry (DSC) and polarized optical microscopy (POM) preliminarily revealed the liquid crystalline property of these polymers. The novel liquid crystalline polymers are expected to act as the candidates in some promising areas including optical data storage, optical switch, and molecular devices.


e-Polymers ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Shahram Mehdipour-Ataei ◽  
Leila Akbarian-Feizi

AbstractA diamine monomer containing ester, amide and ether functional groups was prepared and its polymerization reaction with different diisocyanates to give main chain poly(ester amide ether urea)s was investigated. The monomer was synthesized via reaction of terephthaloyl chloride with 4-hydroxybenzoic acid and subsequent reaction of the resulted diacid with 1,8-diamino-3,6-dioxaoctane. The polymers were characterized by FT-IR and 1H-NMR spectroscopic method and elemental analysis. The resulting polymers exhibited excellent solubility in polar solvents. Crystallinity of the resulted polymers was evaluated by wide-angle X-ray diffraction (WXRD) method, and they exhibited semi-crystalline patterns. The glass transition temperatures (Tg) of the polymers determined by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) were in the range of 88-112 °C. The temperatures for 10% weight loss (T10) from their thermogravimetric analysis (TGA) curves were found to be in the range of 297-312 °C in air. Also the prepared polyureas showed liquid crystalline character.


2015 ◽  
Vol 87 (11-12) ◽  
pp. 1085-1097 ◽  
Author(s):  
Li Wang ◽  
Stefan Baudis ◽  
Karl Kratz ◽  
Andreas Lendlein

AbstractA versatile strategy to integrate multiple functions in a polymer based material is the formation of polymer networks with defined nanostructures. Here, we present synthesis and comprehensive characterization of covalently surface functionalized magnetic nanoparticles (MNPs) comprising a bi-layer oligomeric shell, using Sn(Oct)2 as catalyst for a two-step functionalization. These hydroxy-terminated precursors for degradable magneto- and thermo-sensitive polymer networks were prepared via two subsequent surface-initiated ring-opening polymerizations (ROPs) with ω-pentadecalactone and ε-caprolactone. A two-step mass loss obtained in thermogravimetric analysis and two distinct melting transitions around 50 and 85°C observed in differential scanning calorimetry experiments, which are attributed to the melting of OPDL and OCL crystallites, confirmed a successful preparation of the modified MNPs. The oligomeric coating of the nanoparticles could be visualized by transmission electron microscopy. The investigation of degrafted oligomeric coatings by gel permeation chromatography and 1H-NMR spectroscopy showed an increase in number average molecular weight as well as the presence of signals related to both of oligo(ω-pentadecalactone) (OPDL) and oligo(ε-caprolactone) (OCL) after the second ROP. A more detailed analysis of the NMR results revealed that only a few ω-pentadecalactone repeating units are present in the degrafted oligomeric bi-layers, whereby a considerable degree of transesterification could be observed when OPDL was polymerized in the 2nd ROP step. These findings are supported by a low degree of crystallinity for OPDL in the degrafted oligomeric bi-layers obtained in wide angle X-ray scattering experiments. Based on these findings it can be concluded that Sn(Oct)2 was suitable as catalyst for the preparation of nanosized bi-layered coated MNP precursors by a two-step ROP.


Sign in / Sign up

Export Citation Format

Share Document