Single Crystal X-Ray Structural Determination: A Powerful Technique for Natural Products Research and Drug Discovery

2012 ◽  
Vol 545 ◽  
pp. 3-15
Author(s):  
Hoong Kun Fun ◽  
Suchada Chantrapromma ◽  
Nawong Boonnak

Drug discovery from natural products resources have been extensively studied. The most important step in the discovery process is the identification of compounds with interesting biological activity. Single crystal X-ray structure determination is a powerful technique for natural products research and drug discovery in which the detailed three-dimensional structures that emerge can be co-related to the activities of these structures. This article shall present (i) co-crystal structures, (ii) determination of absolute configuration and (iii) the ability to distinguish between whether a natural product compound is a natural product or a natural product artifact. All these three properties are unique to the technique of single crystal X-ray structure determination.

1983 ◽  
Vol 36 (11) ◽  
pp. 2279 ◽  
Author(s):  
BF Bowden ◽  
JC Coll ◽  
VA Patrick ◽  
DM Tapiolas

Three new diterpenes have been isolated from soft corals of the genus Efflatounaria (Coelenterata, Octocorallia, Alcyonacea, Xeniidae). The structure of the first compound (4) was elucidated on the basis of high-field 1H n.m.r. spectroscopy while that of the second metabolite (5) was determined by single-crystal X-ray analysis. The third diterpene (6) was structurally related to (5), and its structure was confirmed by chemical transformation. All three diterpenes can be derived from xenicin-type precursors, by cleavage and recyclization.


2017 ◽  
Vol 73 (3) ◽  
pp. 184-190 ◽  
Author(s):  
Darren Henry Brouwer ◽  
Sylvian Cadars ◽  
Kathryn Hotke ◽  
Jared Van Huizen ◽  
Nicholas Van Huizen

Structure determination of layered materials can present challenges for conventional diffraction methods due to the fact that such materials often lack full three-dimensional periodicity since adjacent layers may not stack in an orderly and regular fashion. In such cases, NMR crystallography strategies involving a combination of solid-state NMR spectroscopy, powder X-ray diffraction, and computational chemistry methods can often reveal structural details that cannot be acquired from diffraction alone. We present here the structure determination of a surfactant-templated layered silicate material that lacks full three-dimensional crystallinity using such an NMR crystallography approach. Through a combination of powder X-ray diffraction and advanced 29Si solid-state NMR spectroscopy, it is revealed that the structure of the silicate layer of this layered silicate material templated with cetyltrimethylammonium surfactant cations is isostructural with the silicate layer of a previously reported material referred to as ilerite, octosilicate, or RUB-18. High-field 1H NMR spectroscopy reveals differences between the materials in terms of the ordering of silanol groups on the surfaces of the layers, as well as the contents of the inter-layer space.


1984 ◽  
Vol 49 (6) ◽  
pp. 1030-1033 ◽  
Author(s):  
Thomas K. Dobbs ◽  
Arnold R. Taylor ◽  
Julie A. Barnes ◽  
Belma D. Iscimenler ◽  
Elizabeth M. Holt ◽  
...  

2013 ◽  
Vol 25 (22) ◽  
pp. 4623-4632 ◽  
Author(s):  
Michael Zeilinger ◽  
Iryna M. Kurylyshyn ◽  
Ulrich Häussermann ◽  
Thomas F. Fässler

ChemInform ◽  
2010 ◽  
Vol 26 (18) ◽  
pp. no-no
Author(s):  
M.-R. SPIRLET ◽  
X. JEMINE ◽  
J. GOFFART

2004 ◽  
Vol 59 (5) ◽  
pp. 567-572 ◽  
Author(s):  
Claus Mühle ◽  
Andrey Karpov ◽  
Jürgen Nuss ◽  
Martin Jansen

Abstract Crystals of K2Pt(CN)4Br2, K2Pt(CN)4I2 and K2Pt(CN)4Cl2 ·2H2O were grown, and their crystal structures have been determined from single crystal data. The structure of K2Pt(CN)4Cl2 has been determined and refined from X-ray powder data. All compounds crystallize monoclinicly (P21/c; Z = 2), and K2Pt(CN)4X2 with X = Cl, Br, I are isostructural. K2Pt(CN)4Cl2: a = 708.48(2); b = 903.28(3); c = 853.13(3) pm; β = 106.370(2)°; Rp = 0.064 (N(hkl) = 423). K2Pt(CN)4Br2: a = 716.0(1); b = 899.1(1); c = 867.9(1) pm; β = 106.85(1)°; R(F)N′ = 0.026 (N’(hkl) = 3757). K2Pt(CN)4I2: a = 724.8(1); b = 914.5(1); c = 892.1(1) pm; β = 107.56(1)°; R(F)N′ = 0.025 (N’(hkl) = 2197). K2Pt(CN)4Cl2 ·2H2O: a = 763.76(4); b = 1143.05(6); c = 789.06(4) pm; β = 105.18(1)°; R(F)N′ = 0.021 (N’(hkl) = 2281). Raman and infrared spectroscopy data are reported.


Author(s):  
A. E. Gunnæs ◽  
A. Olsen ◽  
P. T. Zagierski ◽  
B. Klewe ◽  
O. B. Karlsen ◽  
...  

AbstractThe crystal structure of


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Yi-ning Zhong ◽  
Yan Zhang ◽  
Yun-qiong Gu ◽  
Shi-yun Wu ◽  
Wen-ying Shen ◽  
...  

Tryptanthrin is one of the most important members of indoloquinoline alkaloids. We obtained this alkaloid fromIsatis. Two novelFeIIandCoIIcomplexes of tryptanthrin were first synthesized. Single-crystal X-ray diffraction analyses show that these complexes display distorted four-coordinated tetrahedron geometry via two heterocyclic nitrogen and oxygen atoms from tryptanthrin ligand. Binding with G-quadruplex DNA properties revealed that both complexes were found to exhibit significant interaction with G-quadruplex DNA. This study may potentially serve as the basis of future rational design of metal-based drugs from natural products that target the G-quadruplex DNA.


Sign in / Sign up

Export Citation Format

Share Document