Fluid Structure Interaction Simulation on the Seagull Airfoil of the Small Wind Turbine

2012 ◽  
Vol 546-547 ◽  
pp. 160-165
Author(s):  
Li Min Qiao ◽  
Xue Shan Liu ◽  
Yong Bo Yang ◽  
Yong Gang Jia ◽  
Xiao Lin Quan

For the blades of the small wind turbine working under the conditions of Low-Reynolds, the air viscosity has relatively great influence on them. The design and calculation on thickness of airfoils were studied in order to raise its life and reduce weight. In the premise of strength, the lighter, the better. This paper studied the aerodynamic performance of the airfoil under the Low-Reynolds and analyzed fluid-structure interaction effect at Reynolds number 600,000 under three different attack angles. The numerical simulation approach addresses unsteady Reynolds-averaged N-S solutions and covers transition prediction for unsteady mean flows. The computational result and the analysis show that the fluid-structure interaction is an important issue to consider while designing the wind turbine blade. The results may provide technical reference for the further wind turbine design.

2012 ◽  
Vol 512-515 ◽  
pp. 613-616
Author(s):  
Li Min Qiao ◽  
Rui Gu ◽  
Feng Feng ◽  
Xue Shan Liu ◽  
Ying Jun Yang

Green energy resources are more and more fashionable and focused. Among of them, small wind turbine is popular and with many customers because it has an unique feature . The design and calculation on thickness of airfoils were studied in order to raise its life and reduce weight. In the premise of strength, the lighter, the better. This paper studied the aerodynamic performance of the airfoil under the Low-Reynolds and analyzed fluid-structure interaction effect under three different attack angles. The numerical simulation approach addresses unsteady Reynolds-averaged N-Stokes solutions and covers transition prediction for unsteady mean flows. The computational result and the analysis show that the fluid-structure interaction is an important issue to consider while designing the wind turbine blade. The results may provide technical reference for the further wind turbine design.


2022 ◽  
Author(s):  
Arihant Jain ◽  
Joel Khristy ◽  
Seth Pemberton ◽  
Mohammad Mehrabadi

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1832 ◽  
Author(s):  
Michal Lipian ◽  
Pawel Czapski ◽  
Damian Obidowski

While the vast majority of the wind energy market is dominated by megawatt-size wind turbines, the increasing importance of distributed electricity generation gives way to small, personal-size installations. Due to their situation at relatively low heights and above-ground levels, they are forced to operate in a low energy-density environment, hence the important role of rotor optimization and flow studies. In addition, the small wind turbine operation close to human habitats emphasizes the need to ensure the maximum reliability of the system. The present article summarizes a case study of a small wind turbine (rated power 350 W @ 8.4 m/s) from the point of view of aerodynamic performance (efficiency, flow around blades). The structural strength analysis of the blades milled for the prototype was performed in the form of a one-way Fluid–Structure Interaction (FSI). Blade deformations and stresses were examined, showing that only minor deformations may be expected, with no significant influence on rotor aerodynamics. The study of an unorthodox material (PA66 MO polyamide) and application of FSI to examine both structural strength and blade deformation under different operating conditions are an approach rarely employed in small wind turbine design.


2013 ◽  
Vol 387 ◽  
pp. 241-245
Author(s):  
Zeng Qiang Qiao ◽  
Yong Bo Yang

The quality and dependability of the small unmanned plane is more and more important currently. For the small unmanned plane under the conditions of Low-Reynolds, the air viscosity has relatively greater influence on its aerodynamic performance. This is one of the greatest difficulties to design a small unmanned plane. The aerodynamic performance of bionic aerofoil and NACA 4412 is contrastively analyzed while the Reynolds-Number is and by the Fluent. The computational result and the analysis show that the fluid-structure interaction is an important issue to consider while designing the small unmanned plane.


2021 ◽  
Vol 78 ◽  
pp. 102970
Author(s):  
B. Wiegard ◽  
M. König ◽  
J. Lund ◽  
L. Radtke ◽  
S. Netzband ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document