Investigation on the Simulation of SCR Chemical Reaction

2012 ◽  
Vol 569 ◽  
pp. 193-197
Author(s):  
Wei Wang ◽  
You Hong Xiao ◽  
Xin Na Tian

Abstract. With the global environment worsening and the consciousness of protecting environment strengthening, the limitation of noxious gas from diesel engines is becoming more and more strictly. Selective catalytic reduction (SCR) aftertreatment system has been applied to reduce Nitrogen Oxides (NOx) as a key technology. The urea solution injected into the tailpipe decomposes to ammonia, which will react with NOx on the surface of SCR catalyst. The main purpose of this paper is to study the effect of different concentrations of NO, NO2 and NH3 on the reactions taking place with SCR catalyst by simulation. Based on mass transfer equations and chemical kinetics the simulation results predict the concentrations of NO, NO2 and NH3 accurately. The mass conservation equations of species are solved by the software MATLAB. Some regulations can be revealed to improve the NOx conversion efficiency and reduced the NH3 slip.

2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Jordan Easter ◽  
Stanislav V. Bohac

Low temperature and dilute homogenous charge compression ignition (HCCI) and spark-assisted compression ignition (SACI) can improve fuel efficiency and reduce engine-out NOx emissions, especially during lean operation. However, under lean operation, these combustion modes are unable to achieve Environmental Protection Agency (EPA) Tier 3 emissions standards without the use of lean aftertreatment. The three way catalyst (TWC)-SCR lean aftertreatment concept investigated in this work uses periodic-rich operation to produce NH3 over a TWC to be stored on a selective catalytic reduction (SCR) catalyst for NOx conversion during subsequent lean operation. Experiments were performed with a modified 2.0 L gasoline engine that was cycled between lean HCCI and rich SACI operation and between lean and rich spark-ignited (SI) combustion to evaluate NOx conversion and fuel efficiency benefits. Different lambda values during rich operation and different times held in rich operation were investigated. Results are compared to a baseline case in which the engine is always operated at stoichiometric conditions. SCR system calculations are also presented to allow for comparisons of system performance for different levels of stored NH3. With the configuration used in this study, lean/rich HCCI/SACI operation resulted in a maximum NOx conversion efficiency of only 10%, while lean/rich SI operation resulted in a maximum NOx conversion efficiency of 60%. If the low conversion efficiency of HCCI/SACI operation could be improved through higher brick temperatures or additional SCR bricks, calculations indicate that TWC-SCR aftertreatment has the potential to provide attractive fuel efficiency benefits and near-zero tailpipe NOx. Calculated potential fuel efficiency improvement relative to stoichiometric SI is 7–17% for lean/rich HCCI/SACI with zero tailpipe NOx and −1 to 5% for lean/rich SI with zero tailpipe NOx emissions. Although the previous work indicated that the use of HCCI/SACI increases the time for NH3 to start forming over the TWC during rich operation, reduces NH3 production over the TWC per fuel amount, and increases NH3 slip over the SCR catalyst, if NOx conversion efficiency could be enhanced, improvements in fuel efficiency could be realized while meeting stringent tailpipe NOx standards.


Author(s):  
Jordan Easter ◽  
Stanislav V. Bohac

Low temperature and dilute Homogenous Charge Compression Ignition (HCCI) and Spark Assisted Compression Ignition (SACI) can improve fuel economy and reduce engine-out NOx emissions to very low values, often less than 30 ppm. However, these combustion modes are unable to achieve stringent future regulations such as SULEV 30 without the use of lean aftertreatment. Though active selective catalytic reduction (SCR) with urea injection and lean NOx traps (LNT) have been investigated as options for lean gasoline engines, a passive TWC-SCR system is investigated in this work because it avoids the urea storage and dosing hardware of a urea SCR system, and the high precious metal cost of an LNT. The TWC-SCR concept uses periodic rich operation to produce NH3 over a TWC to be stored on an SCR catalyst for subsequent NOx conversion during lean operation. In this work a laboratory study was performed with a modified 2.0 L gasoline engine that was cycled between lean HCCI and rich SACI operation, or between lean and rich SI (spark ignited) combustion, to evaluate NOx conversion and reduced fuel consumption. Different lambda values during rich operation and different times held in rich operation were investigated. Results are compared to a baseline case in which the engine is always operated at stoichiometric conditions. SCR system simulations are also presented that compare system performance for different levels of stored NH3. With the configuration used in this study, lean/rich HCCI/SACI operation showed a maximum NOx conversion efficiency of 10%, while lean/rich SI operation showed a maximum NOx conversion efficiency of 60%. However, if the low conversion efficiency of lean/rich HCCI/SACI operation could be improved through higher brick temperatures or additional SCR bricks, simulation results indicate TWC-SCR aftertreatment has the potential to provide near-zero SCR-out NOx concentration and increased system fuel efficiency. In these simulations, fuel efficiency improvement relative to stoichiometric SI were 7 to15% for lean/rich HCCI/SACI with zero tailpipe NOx and −1 to 5% for lean/rich SI with zero tailpipe NOx emissions. Although previous work indicated increased time for NH3 to start forming over the TWC during rich operation, less NH3 production over the TWC per fuel amount, and increased NH3 slip over the SCR catalyst for advanced combustion systems, if NOx conversion efficiency could be enhanced, improvements in fuel economy and low engine-out NOx from advanced combustion modes would more than make up for these disadvantages.


Author(s):  
Peter Larsson ◽  
Paul Ravenhill ◽  
Lars-Uno Larsson ◽  
Per Tunestål

NOx pollution from Diesel engines causes over 10 000 premature deaths annually and the trend is increasing. In order to decrease this growing global problem, exhaust after-treatment systems for Diesel engines have to be improved. The most common SCR systems in the market place inject an aqueous Urea solution, DEF that evaporates prior the catalytic surface of the SCR-catalyst. Due to a catalytic reaction within the catalyst, NOx is converted nominally into Nitrogen and Water. Currently, the evaporative process is enhanced by aggressive mixer plates and long flow paths; these, negatively, create extra exhaust back pressure and cool the exhaust gases decreasing engine and catalyst efficiency. To achieve future emission legislation targets SCR efficiency has to be improved especially under low catalyst temperature conditions, plus Ammonia slip has to be avoided as it is now legislated against. Swedish Biomimetic’s novel μMist® platform technology, inspired by the Bombardier Beetle, injects a hot, effervescent, finely atomised, highly dispersed spray plume of DEF into the exhaust stream. This is achieved by raising the temperature of the DEF, in a closed volume, above its saturated vapour pressure. The DEF is then rapidly released creating effervescent atomisation. This study investigates a back to back study of the evaporating and mixing behaviour of the μMist® injector and a class leading DEF injector. The test conditions are with and without a mixer plate and the use of two different flow path designs. Spray distribution across the face of the catalyst is assessed by measuring NOx conversion whilst Ammonia slip is also measured post catalyst. This report describes how the novel μMist® injector significantly increases NOx conversion and catalyst surface usage whilst considerably reducing Ammonia slip.


Author(s):  
Pingen Chen ◽  
Junmin Wang

The low-temperature operations of diesel engines and aftertreatment systems have attracted increasing attention over the past decade due to the stringent diesel emission regulations and excessive tailpipe emissions at low temperatures. The removal of NOx emissions using selective catalytic reduction (SCR) systems during low-temperature operations remains a significant challenge. One of the popular techniques for alleviating this issue is to employ active thermal management via in-cylinder postinjection to promote aftertreatment system temperatures. Meanwhile, numerous studies have focused on ammonia coverage ratio controls with the aim to maintain high NOx conversion efficiency and low tailpipe ammonia slip. However, most of the active thermal management and SCR controls in the existing literatures were separately and conservatively designed, which can lead to higher cost of SCR operation than needed including diesel fuel consumption through active thermal management and urea solution consumption. The main purpose of this study is to design and coordinate active thermal management and SCR control using nonlinear model predictive control (NMPC) approach to minimize the total cost of SCR operation while obtaining high NOx conversion efficiency and low tailpipe ammonia slip. Simulation results demonstrate that, compared to the baseline control which consists of separated active thermal management and SCR control, the coordinated control is capable of reducing the total cost of SCR operation by 25.6% while maintaining the tailpipe NOx emissions and ammonia slip at comparable levels. Such an innovative coordinated control design concept shows its promise in achieving low tailpipe emissions during low-temperature operations in a cost-effective fashion.


Author(s):  
Vitaly Y. Prikhodko ◽  
Josh A. Pihl ◽  
Samuel A. Lewis ◽  
James E. Parks

Core samples cut from full size commercial Fe- and Cu-zeolite SCR catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and PCCI combustion modes. Subsequently, the NOx reduction performance of the exposed catalysts was evaluated on a laboratory bench-reactor fed with simulated exhaust. The Fe-zeolite NOx conversion efficiency was significantly degraded, especially at low temperatures (<250°C), after the catalyst was exposed to the engine exhaust. The degradation of the Fe-zeolite performance was similar for both combustion modes. The Cu-zeolite was much more resistant to HC fouling than the Fe-zeolite catalyst. In the case of the Cu-zeolite, PCCI exhaust had a more significant impact than the exhaust from conventional combustion on the NOx conversion efficiency. For all cases, the clean catalyst performance was recovered after heating to 600°C. GC-MS analysis of the HCs adsorbed to the catalyst surface provided insights into the observed NOx reduction performance trends.


Author(s):  
Tianyou Wang ◽  
Shuliang Liu ◽  
Hongjun Xu ◽  
Xing Li ◽  
Maolin Fu ◽  
...  

In this study, ZSM-5 zeolites were successfully in situ synthesized on the surface of honeycomb cordierite substrate and certified by XRD and SEM techniques. Strong interaction between zeolite and substrate has been found during in-situ synthesis, and hydrothermal stabilities of the zeolites was improved by entailing. The in-situ synthesized monolithic ZSM-5/cordierite showed superior thermal and hydrothermal stabilities. Cu-ZSM-5/cordierite was prepared by ion-exchange and impregnation methods were studied as catalysts for selective catalytic reduction (SCR) of nitrogen oxides (NOx) in a lean-burn gasoline engine. Engine test results show that NOx emission was decreased by reductants of HC and CO in the exhaust gas without any other extra reducing agents. It also exhibited high activities. Using Cu-ZSM-5/cordierite, the maximum NOx conversion efficiency to N2 reached to 64% at the exhaust temperature of 400 °C and the gas hourly space velocity (GHTV) of 25 000/h. Meanwhile, the HC conversion efficiency was about 60%, while CO was little converted. Cu-ZSM-5/cordierite also showed good duration and anti-poison properties. Furthermore, the activated temperature of the Cu-ZSM-5/cordierite was decreased and the NOx conversion was increased via addition of iridium as a modifier.


Author(s):  
Qinghua Lin ◽  
Pingen Chen

Ammonia storage nonuniformity has a significant impact on the emission reduction performance of urea-based selective catalytic reduction (SCR) systems. In this paper, a unique SCR platform with two catalysts in a parallel configuration was created for investigating the impact of ammonia storage nonuniformity on the emission reduction performance in a simulation environment. The established two-cell SCR platform allows users to independently control the ammonia-to-NOx ratio (ANR) for each catalyst using two independent urea solution injectors. Simulation results over US06 cycle demonstrate that, compared to the case without ammonia storage nonuniformity, the tailpipe NOx and ammonia emissions can be increased by 6.73% and 22.0%, respectively, due to the nonuniform ammonia storage in the case of an ANR nonuniformity index (NUI) at 0.2. Furthermore, an innovative model-based method was proposed for estimating the ammonia coverage ratio nonuniformity (i.e., ammonia storage nonuniformity if storage capacity is known) by utilizing a control-oriented SCR model and the tailpipe NOx and ammonia measurements at the confluence point. Simulation results proved the effectiveness of the proposed method in estimating the ammonia coverage ratio nonuniformity.


Author(s):  
Vitaly Y. Prikhodko ◽  
Josh A. Pihl ◽  
Samuel A. Lewis ◽  
James E. Parks

Core samples cut from full size commercial Fe-and Cu- zeolite selective catalytic reduction catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and premixed charge compression ignition (PCCI) combustion modes. Subsequently, the NOx reduction performance of the exposed catalysts was evaluated on a laboratory bench-reactor fed with simulated exhaust. The Fe-zeolite NOx conversion efficiency was significantly degraded, especially at low temperatures (<250 °C), after the catalyst was exposed to the engine exhaust. The degradation of the Fe-zeolite performance was similar for both combustion modes. The Cu-zeolite was much more resistant to hydrocarbon (HC) fouling than the Fe-zeolite catalyst. In the case of the Cu-zeolite, PCCI exhaust had a more significant impact than the exhaust from conventional combustion on the NOx conversion efficiency. For all cases, the clean catalyst performance was recovered after heating to 600 °C. Gas chromatography mass spectrometry analysis of the HCs adsorbed to the catalyst surface provided insights into the observed NOx reduction performance trends.


Author(s):  
Michael A. Smith ◽  
Christopher D. Depcik ◽  
Stefan Klinkert ◽  
John W. Hoard ◽  
Stanislav V. Bohac ◽  
...  

One approach for nitrogen oxides (NOx) emission control of medium duty diesel engines is through the use of a combination Lean NOx Trap and Selective Catalytic Reduction (LNT-SCR) catalyst system. In this system, part of the NOx conversion occurs via an NH3 SCR catalyst that is dependent on the NO2 to NOx ratio of the feed gas with NO2 being a more advantageous oxidizer. One benefit of using this system is the conversion of NO to NO2 over the LNT which increases the NO2:NOx ratio of the feed gas to the SCR catalyst. An experimental study has been performed to investigate the NO2-NH3 reaction for an Fe-based zeolite SCR catalyst using a bench top flow reactor. The increase in NO2 concentration at the inlet of the SCR results in the formation of large quantities of N2O from 200°C to 400°C. Further experiments determined that N2O and NH3 react above 350°C. This has led to a hypothesis that one primary SCR reaction (Slow SCR) can be replaced with two reaction steps featuring NH3, NO2, and N2O. As a result, this paper proposes five NOx reduction reactions as part of a global mechanism, which would account for the observed experimental behavior.


Sign in / Sign up

Export Citation Format

Share Document