Research on the Sensitivity of Rock Slope Stability to the Effect Factors under Blasting Disturbance

2012 ◽  
Vol 594-597 ◽  
pp. 2267-2271
Author(s):  
Ping Chen ◽  
Ming Chen ◽  
Jian Kong ◽  
Yu Liu

The rock slope stability under blasting excavation disturbance is an important study content in the fields of hydropower, mining, transportation and other research field. Basing on a potential slip rock mass of the left slope of Jinping-Ⅰ Hydropower Station, using Sarma method of the limit equilibrium analysis and orthogonal experimental design, the paper analyzed the main factors which affect the slope stability, and studied the sensibilities of the slope stability to various factors under blasting disturbance. The results indicate that the slope stability under blasting disturb is very sensitive to the change of internal correlative of potential slip rock mass. The slope stability under blasting disturb is less sensitive to the change of external correlative factors which are result from the blasting.

Geosciences ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 163
Author(s):  
Paolo Budetta

The rock slope stability assessment can be performed by means of deterministic and probabilistic approaches. As the deterministic analysis needs only representative values (generally, the mean value) for each physical and geo-mechanical parameter involved, it does not take into account the variability and uncertainty of geo-structural and geo-mechanical properties of joints. This analysis can be usually carried out using different methods, such as the Limit Equilibrium method or numerical modeling techniques sometimes implemented in graphical tests to identify different failure mechanisms (kinematic approach). Probabilistic methods (kinetic approach) aimed to calculate the slope failure probability, consider all orientations, physical characters and shear strength of joints and not only those recognized as kinematically possible. Consequently, the failure probability can be overestimated. It is, therefore, considered more realistic to perform both kinematic and kinetic analyses and to calculate a conditional probability given by the product of the kinematic and kinetic probabilities assuming that they are statistically independent variables. These approaches have been tested on two rock slopes in the Campanian region of Southern Italy affected by possible plane and wedge failures, respectively. Kinematic and kinetic probabilities have been evaluated both by means of the Markland’s test and the Monte Carlo simulation. Using the Eurocode 7, also a deterministic limit equilibrium analysis was performed. The obtained results were compared and commented on.


2009 ◽  
Vol 9 (6) ◽  
pp. 1763-1773 ◽  
Author(s):  
O. Mavrouli ◽  
J. Corominas ◽  
J. Wartman

Abstract. An analytical methodology is presented to evaluate rock slope stability under seismic conditions by considering the geomechanical and topographic properties of a slope. The objective is to locate potential rockfall source areas and evaluate their susceptibility in terms of probability of failure. For this purpose, the slope face of a study area is discretized into cells having homogenous aspect, slope angle, rock properties and joint set orientations. A pseudostatic limit equilibrium analysis is performed for each cell, whereby the destabilizing effect of an earthquake is represented by a horizontal force. The value of this force is calculated by linear interpolation between the peak horizontal ground acceleration PGA at the base and the top of the slope. The ground acceleration at the top of the slope is increased by 50% to account for topographic amplification. The uncertainty associated with the joint dip is taken into account using the Monte Carlo method. The proposed methodology was applied to a study site with moderate seismicity in Solà de Santa Coloma, located in the Principality of Andorra. The results of the analysis are consistent with the spatial distribution of historical rockfalls that have occurred since 1997. Moreover, the results indicate that for the studied area, 1) the most important factor controlling the rockfall susceptibility of the slope is water pressure in joints and 2) earthquake shaking with PGA of ≤0.16 g will cause a significant increase in rockfall activity only if water levels in joints are greater than 50% of the joint height.


2011 ◽  
Vol 08 (02) ◽  
pp. 209-228 ◽  
Author(s):  
HEHUA ZHU ◽  
XIAOYING ZHUANG ◽  
YONGCHANG CAI ◽  
GUOWEI MA

The meshless methods are particularly suitable for modeling problems with discontinuities such as joints in rock mass. The meshless Shepard and least squares (MSLS) method is a newly developed meshless method, which overcomes some limitations with other meshless methods. In the present paper, the MSLS method is extended for modeling jointed rock mass and the joint is modeled as discontinuity governing the near-field stress. A substantial high rock slope by the dam shoulder of Jinping Hydropower Station is analyzed by the developed method. Safety factors are evaluated based on the stress results along potential slip surfaces and compared with the conventional slice methods. The results demonstrate the feasibility of using the MSLS method in rock slope stability analysis and also reveal some interesting differences from the conventional slice methods. Some findings and outstanding issues demonstrated in this study are discussed in the end, which can be the topics for future development.


1989 ◽  
Vol 26 (4) ◽  
pp. 679-686 ◽  
Author(s):  
Oldrich Hungr ◽  
F. M. Salgado ◽  
P. M. Byrne

A study comparing a three-dimensional extension of the Bishop simplified method with other limit equilibrium solutions is presented. Very good correspondence is found in cases of rotational and symmetric sliding surfaces, such as ellipsoids. The Bishop method tends to be conservative when applied to nonrotational and asymmetric surfaces because it neglects internal strength. The error is, however, tolerably small for many commonly occurring slide geometries. Indices are proposed to identify cases for which the method should not be used. With its limitations defined, the Bishop simplified method offers a useful algorithm for three-dimensional limit equilibrium analysis. Key words: three-dimensional slope stability analysis.


Sign in / Sign up

Export Citation Format

Share Document