The IP Design for a Customized Mobile SoC

2012 ◽  
Vol 605-607 ◽  
pp. 2087-2090
Author(s):  
Xiang Wen Liu ◽  
Li Min Liu

IP, Intellectual Property, modules are essential and important for SoC applications. SoC, System on a Chip, is a system integrated on a single semiconductor chip. It is a research hot-point in embedded systems. In this paper, the IP design for a customized mobile SoC is discussed. The customized mobile SoC integrates a mobile computing control or monitor system into one chip FPGA, Field Programmable Gate Arrays. The SoC is required smaller in size and more efficient in operation.

Author(s):  
Tomoaki Sato ◽  
Sorawat Chivapreecha ◽  
Phichet Moungnoul ◽  
Kohji Higuchi

Field-programmable gate arrays (FPGAs) are used in various systems with reconfigurable functions. Conventional FPGAs have been developed using a transistor level description for minimizing routing delay. Although FPGAs developed with a register transfer level (RTL) design methodology provide various benefits to the designers of a system-on-a-chip (SoC), they have not been realized. Therefore, the authors advanced their development. They should be shown to operate with practical throughput. For this purpose, circuits on these device need to be designed and evaluated. In this paper, a ripple-carry adder (RCA) was designed and the throughput of the RCA was evaluated. The resulting throughput was applicable to network processors. Additionally, a wave-pipelined operation without changing the RCA revealed that the problem of routing delay in FPGA developed by RTL methodology was mitigated. The contributions of this paper are to clarify that a 4-bit adder can be implemented on FPGAs and their throughput can be improved by wave-pipelined operations.


Author(s):  
Omar Salem Baans ◽  
Asral Bahari Jambek

<span>ARM processors are widely used in embedded systems. They are often implemented as microcontrollers, field-programmable gate arrays (FPGAs) or systems-on-chip. In this paper, a variety of ARM processor platform implementations are reviewed, such as implementation into a microcontroller, a system-on-chip and a hybrid ARM-FPGA platform. Furthermore, the implementation of a specific ARM processor, the Cortex-A9 processor, into a system-on-chip (SoC) on an FPGA is discussed using Xilinx’s Vivado and SDK software system and execution on a Xilinx Zynq Board.</span>


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2108
Author(s):  
Mohamed Yassine Allani ◽  
Jamel Riahi ◽  
Silvano Vergura ◽  
Abdelkader Mami

The development and optimization of a hybrid system composed of photovoltaic panels, wind turbines, converters, and batteries connected to the grid, is first presented. To generate the maximum power, two maximum power point tracker controllers based on fuzzy logic are required and a battery controller is used for the regulation of the DC voltage. When the power source varies, a high-voltage supply is incorporated (high gain DC-DC converter controlled by fuzzy logic) to boost the 24 V provided by the DC bus to the inverter voltage of about 400 V and to reduce energy losses to maximize the system performance. The inverter and the LCL filter allow for the integration of this hybrid system with AC loads and the grid. Moreover, a hardware solution for the field programmable gate arrays-based implementation of the controllers is proposed. The combination of these controllers was synthesized using the Integrated Synthesis Environment Design Suite software (Version: 14.7, City: Tunis, Country: Tunisia) and was successfully implemented on Field Programmable Gate Arrays Spartan 3E. The innovative design provides a suitable architecture based on power converters and control strategies that are dedicated to the proposed hybrid system to ensure system reliability. This implementation can provide a high level of flexibility that can facilitate the upgrade of a control system by simply updating or modifying the proposed algorithm running on the field programmable gate arrays board. The simulation results, using Matlab/Simulink (Version: 2016b, City: Tunis, Country: Tunisia, verify the efficiency of the proposed solution when the environmental conditions change. This study focused on the development and optimization of an electrical system control strategy to manage the produced energy and to coordinate the performance of the hybrid energy system. The paper proposes a combined photovoltaic and wind energy system, supported by a battery acting as an energy storage system. In addition, a bi-directional converter charges/discharges the battery, while a high-voltage gain converter connects them to the DC bus. The use of a battery is useful to compensate for the mismatch between the power demanded by the load and the power generated by the hybrid energy systems. The proposed field programmable gate arrays (FPGA)-based controllers ensure a fast time response by making control executable in real time.


Sign in / Sign up

Export Citation Format

Share Document